Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data
- URL: http://arxiv.org/abs/2405.09817v2
- Date: Fri, 17 May 2024 05:39:52 GMT
- Title: Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data
- Authors: Maxim Ziatdinov,
- Abstract summary: We introduce fully Bayesian Neural Networks (FBNNs) for active learning tasks in the'small data' regime.
FBNNs provide reliable predictive distributions, crucial for making informed decisions under uncertainty in the active learning setting.
Here, we assess the suitability and performance of FBNNs with the No-U-Turn Sampler for active learning tasks in the'small data' regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning optimizes the exploration of large parameter spaces by strategically selecting which experiments or simulations to conduct, thus reducing resource consumption and potentially accelerating scientific discovery. A key component of this approach is a probabilistic surrogate model, typically a Gaussian Process (GP), which approximates an unknown functional relationship between control parameters and a target property. However, conventional GPs often struggle when applied to systems with discontinuities and non-stationarities, prompting the exploration of alternative models. This limitation becomes particularly relevant in physical science problems, which are often characterized by abrupt transitions between different system states and rapid changes in physical property behavior. Fully Bayesian Neural Networks (FBNNs) serve as a promising substitute, treating all neural network weights probabilistically and leveraging advanced Markov Chain Monte Carlo techniques for direct sampling from the posterior distribution. This approach enables FBNNs to provide reliable predictive distributions, crucial for making informed decisions under uncertainty in the active learning setting. Although traditionally considered too computationally expensive for 'big data' applications, many physical sciences problems involve small amounts of data in relatively low-dimensional parameter spaces. Here, we assess the suitability and performance of FBNNs with the No-U-Turn Sampler for active learning tasks in the 'small data' regime, highlighting their potential to enhance predictive accuracy and reliability on test functions relevant to problems in physical sciences.
Related papers
- Empowering Bayesian Neural Networks with Functional Priors through Anchored Ensembling for Mechanics Surrogate Modeling Applications [0.0]
We present a novel BNN training scheme based on anchored ensembling that can integrate a priori information available in the function space.
The anchoring scheme makes use of low-rank correlations between NN parameters, learnt from pre-training to realizations of the functional prior.
We also perform a study to demonstrate how correlations between NN weights, which are often neglected in existing BNN implementations, is critical to appropriately transfer knowledge between the function-space and parameter-space priors.
arXiv Detail & Related papers (2024-09-08T22:27:50Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
We present a novel approach to extracting inductive biases from a set of related datasets.
We use functional Bayesian neural network inference, which views the prior as a process and performs inference in the function space.
Our approach can seamlessly acquire and represent complex prior knowledge by metalearning the score function of the data-generating process.
arXiv Detail & Related papers (2022-10-24T15:14:26Z) - Conditional Neural Processes for Molecules [0.0]
Neural processes (NPs) are models for transfer learning with properties reminiscent of Gaussian Processes (GPs)
This paper applies the conditional neural process (CNP) to DOCKSTRING, a dataset of docking scores for benchmarking ML models.
CNPs show competitive performance in few-shot learning tasks relative to supervised learning baselines common in QSAR modelling, as well as an alternative model for transfer learning based on pre-training and refining neural network regressors.
arXiv Detail & Related papers (2022-10-17T16:10:12Z) - Physically constrained neural networks to solve the inverse problem for
neuron models [0.29005223064604074]
Systems biology and systems neurophysiology are powerful tools for a number of key applications in the biomedical sciences.
Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators.
arXiv Detail & Related papers (2022-09-24T12:51:15Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Active Importance Sampling for Variational Objectives Dominated by Rare
Events: Consequences for Optimization and Generalization [12.617078020344618]
We introduce an approach that combines rare events sampling techniques with neural network optimization to optimize objective functions dominated by rare events.
We show that importance sampling reduces the variance of the solution to a learning problem, suggesting benefits for generalization.
Our numerical experiments demonstrate that we can successfully learn even with the compounding difficulties of high-dimensional and rare data.
arXiv Detail & Related papers (2020-08-11T23:38:09Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.