Retro-fallback: retrosynthetic planning in an uncertain world
- URL: http://arxiv.org/abs/2310.09270v3
- Date: Sun, 14 Apr 2024 02:50:35 GMT
- Title: Retro-fallback: retrosynthetic planning in an uncertain world
- Authors: Austin Tripp, Krzysztof Maziarz, Sarah Lewis, Marwin Segler, José Miguel Hernández-Lobato,
- Abstract summary: Retrosynthesis is the task of planning a series of chemical reactions to create a desired molecule from simpler, buyable molecules.
We propose a novel formulation of retrosynthesis in terms of processes to account for this uncertainty.
We then propose a novel greedy algorithm called retro-fallback which maximizes the probability that at least one plan can be executed in the lab.
- Score: 29.35379180648418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrosynthesis is the task of planning a series of chemical reactions to create a desired molecule from simpler, buyable molecules. While previous works have proposed algorithms to find optimal solutions for a range of metrics (e.g. shortest, lowest-cost), these works generally overlook the fact that we have imperfect knowledge of the space of possible reactions, meaning plans created by algorithms may not work in a laboratory. In this paper we propose a novel formulation of retrosynthesis in terms of stochastic processes to account for this uncertainty. We then propose a novel greedy algorithm called retro-fallback which maximizes the probability that at least one synthesis plan can be executed in the lab. Using in-silico benchmarks we demonstrate that retro-fallback generally produces better sets of synthesis plans than the popular MCTS and retro* algorithms.
Related papers
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Retro-prob: Retrosynthetic Planning Based on a Probabilistic Model [5.044138778500218]
Retrosynthesis is a fundamental but challenging task in organic chemistry.
Given a target molecule, the goal of retrosynthesis is to find out a series of reactions which could be assembled into a synthetic route.
We propose a new retrosynthetic planning algorithm called retro-prob to maximize the successful synthesis probability of target molecules.
arXiv Detail & Related papers (2024-05-25T08:23:40Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule.
Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms.
We propose a novel framework that utilizes context information for improved retrosynthetic planning.
arXiv Detail & Related papers (2022-09-30T08:44:58Z) - Retroformer: Pushing the Limits of Interpretable End-to-end
Retrosynthesis Transformer [15.722719721123054]
Retrosynthesis prediction is one of the fundamental challenges in organic synthesis.
We propose Retroformer, a novel Transformer-based architecture for retrosynthesis prediction.
Retroformer reaches the new state-of-the-art accuracy for the end-to-end template-free retrosynthesis.
arXiv Detail & Related papers (2022-01-29T02:03:55Z) - ChemiRise: a data-driven retrosynthesis engine [19.52621175562223]
ChemiRise can propose complete retrosynthesis routes for organic compounds rapidly and reliably.
System was trained on a processed patent database of over 3 million organic reactions.
arXiv Detail & Related papers (2021-08-09T05:13:14Z) - RetCL: A Selection-based Approach for Retrosynthesis via Contrastive
Learning [107.64562550844146]
Retrosynthesis is an emerging research area of deep learning.
We propose a new approach that reformulating retrosynthesis into a selection problem of reactants from a candidate set of commercially available molecules.
For learning the score functions, we also propose a novel contrastive training scheme with hard negative mining.
arXiv Detail & Related papers (2021-05-03T12:47:57Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
Retrosynthetic planning identifies a series of reactions that can lead to the synthesis of a target product.
Existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality.
We propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently.
arXiv Detail & Related papers (2020-06-29T05:53:33Z) - A Bayesian algorithm for retrosynthesis [3.1092085121563526]
This study is to discover synthetic routes backwardly from a given desired molecule to commercially available compounds.
A deep neural network is trained that forwardly predicts a product of the given reactants with a high level of accuracy.
Using the backward model, a diverse set of highly probable reaction sequences ending with a given synthetic target is exhaustively explored using a Monte Carlo search.
arXiv Detail & Related papers (2020-03-06T13:30:30Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.