Retro-Rank-In: A Ranking-Based Approach for Inorganic Materials Synthesis Planning
- URL: http://arxiv.org/abs/2502.04289v2
- Date: Fri, 07 Feb 2025 19:23:50 GMT
- Title: Retro-Rank-In: A Ranking-Based Approach for Inorganic Materials Synthesis Planning
- Authors: Thorben Prein, Elton Pan, Sami Haddouti, Marco Lorenz, Janik Jehkul, Tymoteusz Wilk, Cansu Moran, Menelaos Panagiotis Fotiadis, Artur P. Toshev, Elsa Olivetti, Jennifer L. M. Rupp,
- Abstract summary: Retrosynthesis strategically plans the synthesis of a chemical target compound from simpler, readily available precursor compounds.
We propose Retro-Rank-In, a novel framework that reformulates the retrosynthesis problem by embedding target and precursor materials into a shared latent space.
We show that Retro-Rank-In sets a new state-of-the-art, particularly in out-of-distribution generalization and candidate set ranking.
- Score: 1.3676986541298586
- License:
- Abstract: Retrosynthesis strategically plans the synthesis of a chemical target compound from simpler, readily available precursor compounds. This process is critical for synthesizing novel inorganic materials, yet traditional methods in inorganic chemistry continue to rely on trial-and-error experimentation. Emerging machine-learning approaches struggle to generalize to entirely new reactions due to their reliance on known precursors, as they frame retrosynthesis as a multi-label classification task. To address these limitations, we propose Retro-Rank-In, a novel framework that reformulates the retrosynthesis problem by embedding target and precursor materials into a shared latent space and learning a pairwise ranker on a bipartite graph of inorganic compounds. We evaluate Retro-Rank-In's generalizability on challenging retrosynthesis dataset splits designed to mitigate data duplicates and overlaps. For instance, for Cr2AlB2, it correctly predicts the verified precursor pair CrB + Al despite never seeing them in training, a capability absent in prior work. Extensive experiments show that Retro-Rank-In sets a new state-of-the-art, particularly in out-of-distribution generalization and candidate set ranking, offering a powerful tool for accelerating inorganic material synthesis.
Related papers
- Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge [25.234422666357947]
We propose Retrieval-Retro for inorganic retrosynthesis planning, which implicitly extracts the precursor information of reference materials.
During retrieval, we consider the thermodynamic relationship between target material and precursors, which is essential domain expertise.
Experiments demonstrate the superiority of Retrieval-Retro in retrosynthesis planning, especially in discovering novel synthesis recipes.
arXiv Detail & Related papers (2024-10-28T04:37:08Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Retro-prob: Retrosynthetic Planning Based on a Probabilistic Model [5.044138778500218]
Retrosynthesis is a fundamental but challenging task in organic chemistry.
Given a target molecule, the goal of retrosynthesis is to find out a series of reactions which could be assembled into a synthetic route.
We propose a new retrosynthetic planning algorithm called retro-prob to maximize the successful synthesis probability of target molecules.
arXiv Detail & Related papers (2024-05-25T08:23:40Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Recent advances in artificial intelligence for retrosynthesis [29.32667622776065]
Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules.
Recent breakthroughs driven by artificial intelligence have revolutionized retrosynthesis.
arXiv Detail & Related papers (2023-01-14T09:29:39Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule.
Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms.
We propose a novel framework that utilizes context information for improved retrosynthetic planning.
arXiv Detail & Related papers (2022-09-30T08:44:58Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
We propose a novel end-to-end graph generation model for retrosynthesis prediction.
It sequentially identifies the reaction center, generates the synthons, and adds motifs to the synthons to generate reactants.
Experiments on a benchmark dataset show that the proposed model significantly outperforms previous state-of-the-art algorithms.
arXiv Detail & Related papers (2022-09-27T06:29:35Z) - Retroformer: Pushing the Limits of Interpretable End-to-end
Retrosynthesis Transformer [15.722719721123054]
Retrosynthesis prediction is one of the fundamental challenges in organic synthesis.
We propose Retroformer, a novel Transformer-based architecture for retrosynthesis prediction.
Retroformer reaches the new state-of-the-art accuracy for the end-to-end template-free retrosynthesis.
arXiv Detail & Related papers (2022-01-29T02:03:55Z) - RetCL: A Selection-based Approach for Retrosynthesis via Contrastive
Learning [107.64562550844146]
Retrosynthesis is an emerging research area of deep learning.
We propose a new approach that reformulating retrosynthesis into a selection problem of reactants from a candidate set of commercially available molecules.
For learning the score functions, we also propose a novel contrastive training scheme with hard negative mining.
arXiv Detail & Related papers (2021-05-03T12:47:57Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.