A Hybrid Approach for Depression Classification: Random Forest-ANN
Ensemble on Motor Activity Signals
- URL: http://arxiv.org/abs/2310.09277v1
- Date: Fri, 13 Oct 2023 17:39:35 GMT
- Title: A Hybrid Approach for Depression Classification: Random Forest-ANN
Ensemble on Motor Activity Signals
- Authors: Anket Patil, Dhairya Shah, Abhishek Shah, Mokshit Gala
- Abstract summary: Wearable sensors provide a potential way to track and comprehend mental health issues.
Recent research has used these sensors in conjunction with machine learning methods to identify patterns relating to different mental health conditions.
We present a novel algorithm called the Hybrid Random forest - Neural network that has been tailored to evaluate sensor data from depressed patients.
- Score: 4.798808180453298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regarding the rising number of people suffering from mental health illnesses
in today's society, the importance of mental health cannot be overstated.
Wearable sensors, which are increasingly widely available, provide a potential
way to track and comprehend mental health issues. These gadgets not only
monitor everyday activities but also continuously record vital signs like heart
rate, perhaps providing information on a person's mental state. Recent research
has used these sensors in conjunction with machine learning methods to identify
patterns relating to different mental health conditions, highlighting the
immense potential of this data beyond simple activity monitoring. In this
research, we present a novel algorithm called the Hybrid Random forest - Neural
network that has been tailored to evaluate sensor data from depressed patients.
Our method has a noteworthy accuracy of 80\% when evaluated on a special
dataset that included both unipolar and bipolar depressive patients as well as
healthy controls. The findings highlight the algorithm's potential for reliably
determining a person's depression condition using sensor data, making a
substantial contribution to the area of mental health diagnostics.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Mental-Perceiver: Audio-Textual Multimodal Learning for Mental Health Assessment [10.584792972403596]
Mental disorders, such as anxiety and depression, have become a global issue that affects the regular lives of people across different ages.
We have constructed a new large-scale textbfMulti-textbfModal textbfPsychological assessment corpus (MMPsy) on anxiety and depression assessment of Mandarin-speaking adolescents.
Our dataset contains over 7,700 post-processed recordings of interviews for anxiety assessment and over 4,200 recordings for depression assessment.
arXiv Detail & Related papers (2024-08-22T02:54:52Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression.
A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues.
arXiv Detail & Related papers (2024-03-28T10:31:09Z) - DEPAC: a Corpus for Depression and Anxiety Detection from Speech [3.2154432166999465]
We introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety screening tools.
This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information.
We present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech.
arXiv Detail & Related papers (2023-06-20T12:21:06Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
Depression is a common mental illness that has to be detected and treated at an early stage to avoid serious consequences.
We developed a gold standard data set that detects the levels of depression as not depressed', moderately depressed' and severely depressed' from the social media postings.
arXiv Detail & Related papers (2022-02-07T10:24:33Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
Anxiety disorders are the most common class of psychiatric problems affecting both children and adults.
Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods.
eWellness is an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner.
arXiv Detail & Related papers (2020-08-09T20:22:52Z) - Examining the Role of Mood Patterns in Predicting Self-Reported
Depressive symptoms [4.564132389935269]
Depression is the leading cause of disability worldwide.
Initial efforts to detect depression signals from social media posts have shown promising results.
In this work, we attempt to enrich current technology for detecting symptoms of potential depression by constructing a'mood profile' for social media users.
arXiv Detail & Related papers (2020-06-14T12:48:43Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.