Role of Morphogenetic Competency on Evolution
- URL: http://arxiv.org/abs/2310.09318v1
- Date: Fri, 13 Oct 2023 11:58:18 GMT
- Title: Role of Morphogenetic Competency on Evolution
- Authors: Lakshwin Shreesha
- Abstract summary: In Evolutionary Computation, the inverse relationship (impact of intelligence on evolution) is approached from the perspective of organism level behaviour.
We focus on the intelligence of a minimal model of a system navigating anatomical morphospace.
We evolve populations of artificial embryos using a standard genetic algorithm in silico.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The relationship between intelligence and evolution is bidirectional: while
evolution can help evolve intelligences, the degree of intelligence itself can
impact evolution (Baldwin, 1896). In the field of Evolutionary Computation, the
inverse relationship (impact of intelligence on evolution) is approached from
the perspective of organism level behaviour (Hinton, 1996). We extend these
ideas to the developmental (cellular morphogenetic) level in the context of an
expanded view of intelligence as not only the ability of a system to navigate
the three-dimensional world, but also as the ability to navigate other
arbitrary spaces (transcriptional, anatomical, physiological, etc.). Here, we
specifically focus on the intelligence of a minimal model of a system
navigating anatomical morphospace, and assess how the degree and manner of
problem solving competency during morphogenesis effects evolutionary dynamics.
To this end, we evolve populations of artificial embryos using a standard
genetic algorithm in silico. Artificial embryos were cellular collectives given
the capacity to undergo morphogenetic rearrangement (e.g., regulative
development) prior to selection within an evolutionary cycle. Results from our
model indicates that morphogenetic competency significantly alters evolutionary
dynamics, with evolution preferring to improve anatomical intelligence rather
than perfect the structural genes. These observations hint that evolution in
the natural world may be leveraging the problem solving competencies of cells
at multiple scales to boost evolvability and robustness to novel conditions. We
discuss implications of our results for the Developmental Biology and
Artificial Life communities.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - The scaling of goals via homeostasis: an evolutionary simulation,
experiment and analysis [0.0]
We propose that evolution pivoted the collective intelligence of cells during morphogenesis into behavioral intelligence by scaling up the goal states at the center of homeostatic processes.
We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve its target morphology.
We propose that this system is a first step toward a quantitative understanding of how evolution scales minimal goal-directed behavior (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
arXiv Detail & Related papers (2022-11-15T21:48:44Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
We argue for an introspective agent, which considers its own abilities in the context of its environment.
Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment.
arXiv Detail & Related papers (2022-01-02T20:14:01Z) - Towards a Theory of Evolution as Multilevel Learning [0.0]
We apply the theory of learning to physically renormalizable systems in an attempt to develop a theory of biological evolution, including the origin of life, as multilevel learning.
We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable.
We show that these principles entail the major features of biological evolution, including replication and natural selection.
arXiv Detail & Related papers (2021-10-27T17:21:16Z) - Epigenetic opportunities for Evolutionary Computation [0.0]
Evolutionary Computation is a group of biologically inspired algorithms used to solve complex optimisation problems.
It can be split into Evolutionary Algorithms, which take inspiration from genetic inheritance, and Swarm Intelligence algorithms, that take inspiration from cultural inheritance.
This paper breaks down successful bio-inspired algorithms under a contemporary biological framework based on the Extended Evolutionary Synthesis.
arXiv Detail & Related papers (2021-08-10T09:44:53Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z) - Mimicking Evolution with Reinforcement Learning [10.35437633064506]
We argue that the path to developing artificial human-like-intelligence will pass through mimicking the evolutionary process in a nature-like simulation.
This work proposes Evolution via Evolutionary Reward (EvER) that allows learning to single-handedly drive the search for policies with increasingly evolutionary fitness.
arXiv Detail & Related papers (2020-03-31T18:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.