Evolution imposes an inductive bias that alters and accelerates learning dynamics
- URL: http://arxiv.org/abs/2505.10651v1
- Date: Thu, 15 May 2025 18:50:57 GMT
- Title: Evolution imposes an inductive bias that alters and accelerates learning dynamics
- Authors: Benjamin Midler, Alejandro Pan Vazquez,
- Abstract summary: We investigate the effect of evolutionary optimization on the learning dynamics of neural networks.<n>We combined algorithms natural selection and online learning to produce a method for evolutionarily conditioning artificial neural networks.<n>Results suggest evolution constitutes an inductive bias that tunes neural systems to enable rapid learning.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The learning dynamics of biological brains and artificial neural networks are of interest to both neuroscience and machine learning. A key difference between them is that neural networks are often trained from a randomly initialized state whereas each brain is the product of generations of evolutionary optimization, yielding innate structures that enable few-shot learning and inbuilt reflexes. Artificial neural networks, by contrast, require non-ethological quantities of training data to attain comparable performance. To investigate the effect of evolutionary optimization on the learning dynamics of neural networks, we combined algorithms simulating natural selection and online learning to produce a method for evolutionarily conditioning artificial neural networks, and applied it to both reinforcement and supervised learning contexts. We found the evolutionary conditioning algorithm, by itself, performs comparably to an unoptimized baseline. However, evolutionarily conditioned networks show signs of unique and latent learning dynamics, and can be rapidly fine-tuned to optimal performance. These results suggest evolution constitutes an inductive bias that tunes neural systems to enable rapid learning.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs [10.524752369156339]
Biological nervous systems are created in a fundamentally different way than current artificial neural networks.
By contrast, biological nervous systems are grown through a dynamic self-organizing process.
arXiv Detail & Related papers (2023-07-17T01:58:52Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
Deep learning continues to play as a powerful state-of-art technique that has achieved extraordinary accuracy levels in various domains of regression and classification tasks.
The original goal of proposing the neural network model is to improve the understanding of complex human brains using a mathematical expression approach.
Recent deep learning techniques continue to lose the interpretations of its functional process by being treated mostly as a black-box approximator.
arXiv Detail & Related papers (2022-03-24T21:40:04Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Equilibrium Propagation for Complete Directed Neural Networks [0.0]
Most successful learning algorithm for artificial neural networks, backpropagation, is considered biologically implausible.
We contribute to the topic of biologically plausible neuronal learning by building upon and extending the equilibrium propagation learning framework.
arXiv Detail & Related papers (2020-06-15T22:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.