You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment
- URL: http://arxiv.org/abs/2310.09560v2
- Date: Sat, 6 Apr 2024 03:17:33 GMT
- Title: You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment
- Authors: Yi Ke Yun, Weisi Lin,
- Abstract summary: We propose a network to perform full reference (FR) and no reference (NR) IQA.
We first employ an encoder to extract multi-level features from input images.
A Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs.
A Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder.
- Score: 45.62136459502005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although recent efforts in image quality assessment (IQA) have achieved promising performance, there still exists a considerable gap compared to the human visual system (HVS). One significant disparity lies in humans' seamless transition between full reference (FR) and no reference (NR) tasks, whereas existing models are constrained to either FR or NR tasks. This disparity implies the necessity of designing two distinct systems, thereby greatly diminishing the model's versatility. Therefore, our focus lies in unifying FR and NR IQA under a single framework. Specifically, we first employ an encoder to extract multi-level features from input images. Then a Hierarchical Attention (HA) module is proposed as a universal adapter for both FR and NR inputs to model the spatial distortion at each encoder stage. Furthermore, considering that different distortions contaminate encoder stages and damage image semantic meaning differently, a Semantic Distortion Aware (SDA) module is proposed to examine feature correlations between shallow and deep layers of the encoder. By adopting HA and SDA, the proposed network can effectively perform both FR and NR IQA. When our proposed model is independently trained on NR or FR IQA tasks, it outperforms existing models and achieves state-of-the-art performance. Moreover, when trained jointly on NR and FR IQA tasks, it further enhances the performance of NR IQA while achieving on-par performance in the state-of-the-art FR IQA. You only train once to perform both IQA tasks. Code will be released at: https://github.com/BarCodeReader/YOTO.
Related papers
- LAR-IQA: A Lightweight, Accurate, and Robust No-Reference Image Quality Assessment Model [6.074775040047959]
We propose a compact, lightweight NR-IQA model that achieves state-of-the-art (SOTA) performance on ECCV AIM UHD-IQA challenge validation and test datasets.
Our model features a dual-branch architecture, with each branch separately trained on synthetically and authentically distorted images.
Our evaluation considering various open-source datasets highlights the practical, high-accuracy, and robust performance of our proposed lightweight model.
arXiv Detail & Related papers (2024-08-30T07:32:19Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - A Lightweight Parallel Framework for Blind Image Quality Assessment [7.9562077122537875]
We propose a lightweight parallel framework (LPF) for blind image quality assessment (BIQA)
First, we extract the visual features using a pre-trained feature extraction network. Furthermore, we construct a simple yet effective feature embedding network (FEN) to transform the visual features.
We present two novel self-supervised subtasks, including a sample-level category prediction task and a batch-level quality comparison task.
arXiv Detail & Related papers (2024-02-19T10:56:58Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Degraded Reference Image Quality Assessment [23.871178105179883]
We make one of the first attempts to establish a new paradigm named degraded-reference IQA (DR IQA)
Specifically, we lay out the architectures of DR IQA and introduce a 6-bit code to denote the choices of configurations.
We construct the first large-scale databases dedicated to DR IQA and will make them publicly available.
arXiv Detail & Related papers (2021-10-28T05:50:59Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
This paper presents a no-reference IQA metric based on deep meta-learning.
We first collect a number of NR-IQA tasks for different distortions.
Then meta-learning is adopted to learn the prior knowledge shared by diversified distortions.
Extensive experiments demonstrate that the proposed metric outperforms the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-04-11T23:36:36Z) - Feature Quantization Improves GAN Training [126.02828112121874]
Feature Quantization (FQ) for the discriminator embeds both true and fake data samples into a shared discrete space.
Our method can be easily plugged into existing GAN models, with little computational overhead in training.
arXiv Detail & Related papers (2020-04-05T04:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.