EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification
- URL: http://arxiv.org/abs/2310.09754v3
- Date: Fri, 14 Jun 2024 08:10:04 GMT
- Title: EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification
- Authors: Huanhuan Ma, Weizhi Xu, Yifan Wei, Liuji Chen, Liang Wang, Qiang Liu, Shu Wu, Liang Wang,
- Abstract summary: We present a pioneering dataset for multi-hop explainable fact verification.
With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents.
We demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification.
- Score: 22.785622371421876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in accuracy improvement, let alone explainability, a critical capability of fact verification systems. Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant, high-quality dataset. Previous datasets either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EXFEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification, and validate the significance of our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.
Related papers
- Augmenting the Veracity and Explanations of Complex Fact Checking via Iterative Self-Revision with LLMs [10.449165630417522]
We construct two complex fact-checking datasets in the Chinese scenarios: CHEF-EG and TrendFact.
These datasets involve complex facts in areas such as health, politics, and society.
We propose a unified framework called FactISR to perform mutual feedback between veracity and explanations.
arXiv Detail & Related papers (2024-10-19T15:25:19Z) - Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict [34.2739191920746]
High-quality evidence plays a vital role in enhancing fact-checking systems.
We propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web.
We construct RU22Fact, a novel explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples.
arXiv Detail & Related papers (2024-03-25T11:56:29Z) - Explainable Claim Verification via Knowledge-Grounded Reasoning with
Large Language Models [36.91218391728405]
This paper presents First-Order-Logic-Guided Knowledge-Grounded (FOLK) Reasoning.
It can verify complex claims and generate explanations without the need for annotated evidence.
Our experiment results indicate that FOLK outperforms strong baselines on three datasets.
arXiv Detail & Related papers (2023-10-08T18:04:05Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia.
In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim.
We show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
arXiv Detail & Related papers (2023-03-02T17:45:32Z) - FaVIQ: FAct Verification from Information-seeking Questions [77.7067957445298]
We construct a large-scale fact verification dataset called FaVIQ using information-seeking questions posed by real users.
Our claims are verified to be natural, contain little lexical bias, and require a complete understanding of the evidence for verification.
arXiv Detail & Related papers (2021-07-05T17:31:44Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification [74.66819506353086]
HoVer is a dataset for many-hop evidence extraction and fact verification.
It challenges models to extract facts from several Wikipedia articles that are relevant to a claim.
Most of the 3/4-hop claims are written in multiple sentences, which adds to the complexity of understanding long-range dependency relations.
arXiv Detail & Related papers (2020-11-05T20:33:11Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.