Estimating Uncertainty in Multimodal Foundation Models using Public
Internet Data
- URL: http://arxiv.org/abs/2310.09926v2
- Date: Sun, 26 Nov 2023 05:54:48 GMT
- Title: Estimating Uncertainty in Multimodal Foundation Models using Public
Internet Data
- Authors: Shiladitya Dutta, Hongbo Wei, Lars van der Laan, Ahmed M. Alaa
- Abstract summary: Foundation models are trained on vast amounts of data at scale using self-supervised learning.
In this paper, we address the problem of quantifying uncertainty in zero-shot predictions.
We propose a approach for uncertainty estimation in zero-shot settings using conformal prediction with web data.
- Score: 15.365603519829088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models are trained on vast amounts of data at scale using
self-supervised learning, enabling adaptation to a wide range of downstream
tasks. At test time, these models exhibit zero-shot capabilities through which
they can classify previously unseen (user-specified) categories. In this paper,
we address the problem of quantifying uncertainty in these zero-shot
predictions. We propose a heuristic approach for uncertainty estimation in
zero-shot settings using conformal prediction with web data. Given a set of
classes at test time, we conduct zero-shot classification with CLIP-style
models using a prompt template, e.g., "an image of a <category>", and use the
same template as a search query to source calibration data from the open web.
Given a web-based calibration set, we apply conformal prediction with a novel
conformity score that accounts for potential errors in retrieved web data. We
evaluate the utility of our proposed method in Biomedical foundation models;
our preliminary results show that web-based conformal prediction sets achieve
the target coverage with satisfactory efficiency on a variety of biomedical
datasets.
Related papers
- Onboard Out-of-Calibration Detection of Deep Learning Models using Conformal Prediction [4.856998175951948]
We show that conformal prediction algorithms are related to the uncertainty of the deep learning model and that this relation can be used to detect if the deep learning model is out-of-calibration.
An out-of-calibration detection procedure relating the model uncertainty and the average size of the conformal prediction set is presented.
arXiv Detail & Related papers (2024-05-04T11:05:52Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
We propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration.
We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties.
A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets.
arXiv Detail & Related papers (2024-02-14T14:35:57Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Personalized Interpretable Classification [8.806213269230057]
We make a first step towards formally introducing personalized interpretable classification as a new data mining problem.
We conduct a series of empirical studies on real data sets.
Our algorithm can achieve the same-level predictive accuracy as those state-of-the-art (SOTA) interpretable classifiers.
arXiv Detail & Related papers (2023-02-06T01:59:16Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.