Seeking Next Layer Neurons' Attention for Error-Backpropagation-Like
Training in a Multi-Agent Network Framework
- URL: http://arxiv.org/abs/2310.09952v1
- Date: Sun, 15 Oct 2023 21:07:09 GMT
- Title: Seeking Next Layer Neurons' Attention for Error-Backpropagation-Like
Training in a Multi-Agent Network Framework
- Authors: Arshia Soltani Moakhar, Mohammad Azizmalayeri, Hossein Mirzaei,
Mohammad Taghi Manzuri, Mohammad Hossein Rohban
- Abstract summary: We propose a local objective for neurons that align them to exhibit similarities to error-backpropagation.
We examine a neural network comprising decentralized, self-interested neurons seeking to maximize their local objective.
We demonstrate the learning capacity of these multi-agent neural networks through experiments on three datasets.
- Score: 6.446189857311325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite considerable theoretical progress in the training of neural networks
viewed as a multi-agent system of neurons, particularly concerning biological
plausibility and decentralized training, their applicability to real-world
problems remains limited due to scalability issues. In contrast,
error-backpropagation has demonstrated its effectiveness for training deep
networks in practice. In this study, we propose a local objective for neurons
that, when pursued by neurons individually, align them to exhibit similarities
to error-backpropagation in terms of efficiency and scalability during
training. For this purpose, we examine a neural network comprising
decentralized, self-interested neurons seeking to maximize their local
objective -- attention from subsequent layer neurons -- and identify the
optimal strategy for neurons. We also analyze the relationship between this
strategy and backpropagation, establishing conditions under which the derived
strategy is equivalent to error-backpropagation. Lastly, we demonstrate the
learning capacity of these multi-agent neural networks through experiments on
three datasets and showcase their superior performance relative to
error-backpropagation in a catastrophic forgetting benchmark.
Related papers
- Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - Decorrelating neurons using persistence [29.25969187808722]
We present two regularisation terms computed from the weights of a minimum spanning tree of a clique.
We demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms.
We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms.
arXiv Detail & Related papers (2023-08-09T11:09:14Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Dive into the Power of Neuronal Heterogeneity [8.6837371869842]
We show the challenges faced by backpropagation-based methods in optimizing Spiking Neural Networks (SNNs) and achieve more robust optimization of heterogeneous neurons in random networks using an Evolutionary Strategy (ES)
We find that membrane time constants play a crucial role in neural heterogeneity, and their distribution is similar to that observed in biological experiments.
arXiv Detail & Related papers (2023-05-19T07:32:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Adversarial Robustness in Deep Learning: Attacks on Fragile Neurons [0.6899744489931016]
We identify fragile and robust neurons of deep learning architectures using nodal dropouts of the first convolutional layer.
We correlate these neurons with the distribution of adversarial attacks on the network.
arXiv Detail & Related papers (2022-01-31T14:34:07Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.