Empowering SMPC: Bridging the Gap Between Scalability, Memory Efficiency
and Privacy in Neural Network Inference
- URL: http://arxiv.org/abs/2310.10133v1
- Date: Mon, 16 Oct 2023 07:16:09 GMT
- Title: Empowering SMPC: Bridging the Gap Between Scalability, Memory Efficiency
and Privacy in Neural Network Inference
- Authors: Ramya Burra, Anshoo Tandon, Srishti Mittal
- Abstract summary: We implement the ABY2.0 protocol for SMPC on machines with moderate computational resources.
This article addresses the limitations of the C++ based MOTION2NX framework for secure neural network inference.
- Score: 5.09598865497036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to develop an efficient open-source Secure Multi-Party
Computation (SMPC) repository, that addresses the issue of practical and
scalable implementation of SMPC protocol on machines with moderate
computational resources, while aiming to reduce the execution time. We
implement the ABY2.0 protocol for SMPC, providing developers with effective
tools for building applications on the ABY 2.0 protocol. This article addresses
the limitations of the C++ based MOTION2NX framework for secure neural network
inference, including memory constraints and operation compatibility issues. Our
enhancements include optimizing the memory usage, reducing execution time using
a third-party Helper node, and enhancing efficiency while still preserving data
privacy. These optimizations enable MNIST dataset inference in just 32 seconds
with only 0.2 GB of RAM for a 5-layer neural network. In contrast, the previous
baseline implementation required 8.03 GB of RAM and 200 seconds of execution
time.
Related papers
- Enhancing MOTION2NX for Efficient, Scalable and Secure Image Inference using Convolutional Neural Networks [4.407841002228536]
We use the ABY2.0 SMPC protocol implemented on the C++ based MOTION2NX framework for secure convolutional neural network (CNN) inference application with semi-honest security.
We also present a novel splitting algorithm that divides the computations at each CNN layer into multiple chunks.
arXiv Detail & Related papers (2024-08-29T09:50:21Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation
Based Private Inference [17.299835585861747]
We introduce RRNet, a framework that aims to jointly reduce the overhead of MPC comparison protocols and accelerate computation through hardware acceleration.
Our approach integrates the hardware latency of cryptographic building blocks into the DNN loss function, resulting in improved energy efficiency, accuracy, and security guarantees.
arXiv Detail & Related papers (2023-02-05T04:02:13Z) - Pex: Memory-efficient Microcontroller Deep Learning through Partial
Execution [11.336229510791481]
We discuss a novel execution paradigm for microcontroller deep learning.
It modifies the execution of neural networks to avoid materialising full buffers in memory.
This is achieved by exploiting the properties of operators, which can consume/produce a fraction of their input/output at a time.
arXiv Detail & Related papers (2022-11-30T18:47:30Z) - NumS: Scalable Array Programming for the Cloud [82.827921577004]
We present NumS, an array programming library which optimize NumPy-like expressions on task-based distributed systems.
This is achieved through a novel scheduler called Load Simulated Hierarchical Scheduling (LSHS)
We show that LSHS enhances performance on Ray by decreasing network load by a factor of 2x, requiring 4x less memory, and reducing execution time by 10x on the logistic regression problem.
arXiv Detail & Related papers (2022-06-28T20:13:40Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs.
We propose a generic patch-by-patch inference scheduling, which significantly cuts down the peak memory.
We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2.
arXiv Detail & Related papers (2021-10-28T17:58:45Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Efficient Neural Network Deployment for Microcontroller [0.0]
This paper is going to explore and generalize convolution neural network deployment for microcontrollers.
The memory savings and performance will be compared with CMSIS-NN framework developed for ARM Cortex-M CPUs.
The final purpose is to develop a tool consuming PyTorch model with trained network weights, and it turns into an optimized inference engine in C/C++ for low memory(kilobyte level) and limited computing capable microcontrollers.
arXiv Detail & Related papers (2020-07-02T19:21:05Z) - TASO: Time and Space Optimization for Memory-Constrained DNN Inference [5.023660118588569]
Convolutional neural networks (CNNs) are used in many embedded applications, from industrial robotics and automation systems to biometric identification on mobile devices.
We propose an approach for ahead-of-time domain specific optimization of CNN models, based on an integer linear programming (ILP) for selecting primitive operations to implement convolutional layers.
arXiv Detail & Related papers (2020-05-21T15:08:06Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.