論文の概要: Analyzing An After-Sales Service Process Using Object-Centric Process
Mining: A Case Study
- arxiv url: http://arxiv.org/abs/2310.10174v1
- Date: Mon, 16 Oct 2023 08:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 15:37:52.134294
- Title: Analyzing An After-Sales Service Process Using Object-Centric Process
Mining: A Case Study
- Title(参考訳): オブジェクト中心プロセスマイニングによるアフターセールサービスプロセスの分析:ケーススタディ
- Authors: Gyunam Park, Sevde Aydin, Cuneyt Ugur, Wil M. P. van der Aalst
- Abstract要約: 本稿では,オブジェクト中心プロセスマイニングの新たな領域について論じる。
ボルサン・キャットのアフター・セール・サービス・プロセスの詳細なケーススタディを通じて、本研究では、オブジェクト中心のプロセスマイニングの能力を強調した。
- 参考スコア(独自算出の注目度): 0.1433758865948252
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Process mining, a technique turning event data into business process
insights, has traditionally operated on the assumption that each event
corresponds to a singular case or object. However, many real-world processes
are intertwined with multiple objects, making them object-centric. This paper
focuses on the emerging domain of object-centric process mining, highlighting
its potential yet underexplored benefits in actual operational scenarios.
Through an in-depth case study of Borusan Cat's after-sales service process,
this study emphasizes the capability of object-centric process mining to
capture entangled business process details. Utilizing an event log of
approximately 65,000 events, our analysis underscores the importance of
embracing this paradigm for richer business insights and enhanced operational
improvements.
- Abstract(参考訳): イベントデータをビジネスプロセスの洞察に変換する技術であるプロセスマイニングは、伝統的に、各イベントが特定のケースやオブジェクトに対応するという仮定に基づいて運用されてきた。
しかし、現実世界のプロセスの多くは複数のオブジェクトに絡み合っており、オブジェクト中心になっている。
本稿では、オブジェクト中心のプロセスマイニングの新たな領域に注目し、実際の運用シナリオにおける潜在的な未熟な利点を強調する。
borusan cat's after-sales service processの詳細なケーススタディを通じて、本研究は、絡み合ったビジネスプロセスの詳細を捉えるためのオブジェクト中心のプロセスマイニングの能力を強調している。
約65,000のイベントのイベントログを利用することで、よりリッチなビジネス洞察と運用改善のためにこのパラダイムを採用することの重要性を強調する。
関連論文リスト
- Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
本研究では,ビジネスプロセスにおける異常検出のための新しいフレームワークを提案する。
まず、属性グラフとしてオブジェクト中心のイベントログのプロセス依存性を再構築する。
次に、異常事象を検出するために、グラフ畳み込みオートエンコーダアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-02-14T14:17:56Z) - Extracting Process-Aware Decision Models from Object-Centric Process
Data [54.04724730771216]
本稿では,ODDA(Integrated Object-centric Decision Discovery Algorithm)と呼ばれる,オブジェクト中心決定マイニングアルゴリズムを提案する。
IODDAは意思決定の仕組みや意思決定の仕方を知ることができる。
論文 参考訳(メタデータ) (2024-01-26T13:27:35Z) - Detecting Surprising Situations in Event Data [0.45119235878273]
既存の研究では、望ましくない結果が発生する問題のあるプロセスインスタンスの集合が事前に知られており、容易に検出できると仮定される。
我々は,プロセス拡張領域を文脈に敏感な異常/異常検出問題として定式化する。
プロセスのパフォーマンス/アウトカムが期待と大きく異なる状況の特徴付けを目指しています。
論文 参考訳(メタデータ) (2022-08-29T11:33:58Z) - Clustering Object-Centric Event Logs [0.36748639131154304]
本稿では,OCEL に類似したオブジェクトをクラスタリングするクラスタリング手法を提案する。
我々のアプローチは、プロセスモデルの複雑さを減らし、エンドユーザーがプロセスに対する洞察を得るのに役立つオブジェクトの一貫性のあるサブセットを生成する。
論文 参考訳(メタデータ) (2022-07-26T09:16:39Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
本稿では,教育プロセスデータの表現を学習するためのフレームワークを提案する。
我々のフレームワークは、BERT型の目的を用いて、シーケンシャルなプロセスデータから表現を学習する事前学習ステップで構成されています。
当社のフレームワークは,2019年国のレポートカードデータマイニングコンペティションデータセットに適用しています。
論文 参考訳(メタデータ) (2022-04-28T16:07:28Z) - Object-centric Process Predictive Analytics [0.5161531917413706]
オブジェクト指向プロセスは、あるプロセスのインスタンスが独立して実行されるのではなく、同じまたは他のプロセスの他のインスタンスと相互作用するパラダイムの実装である。
本稿では,オブジェクトの相互作用に関する情報を予測分析に組み込むアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-05T18:46:10Z) - Process Comparison Using Object-Centric Process Cubes [69.68068088508505]
実生活のビジネスプロセスでは、プロセス全体を複雑に解釈しがちな振る舞いが存在します。
プロセス比較は、プロセスキューブを使用して、プロセスの異なる動作を互いに分離するプロセスマイニングのブランチです。
オブジェクト中心のイベントログのスライスやダイスなどのプロセスキューブ操作をサポートするプロセスキューブフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T10:08:28Z) - Extracting Semantic Process Information from the Natural Language in
Event Logs [0.1827510863075184]
本稿では、イベントデータの意味的役割ラベリングという手法を提案する。
この方法では,イベント毎に最大8つの意味的役割に関する情報を抽出する。
論文 参考訳(メタデータ) (2021-03-06T08:39:04Z) - Analogous Process Structure Induction for Sub-event Sequence Prediction [111.10887596684276]
本稿では,未確認プロセスのサブイベントシーケンス全体を予測するために,アナログプロセス構造誘導APSIフレームワークを提案する。
我々の実験と分析が示すように、APSIは目に見えないプロセスのための意味のあるサブイベントシーケンスの生成をサポートし、行方不明な事象を予測するのに役立ちます。
論文 参考訳(メタデータ) (2020-10-16T17:35:40Z) - "What Are You Trying to Do?" Semantic Typing of Event Processes [94.3499255880101]
本稿では,認知に動機づけられたセマンティックタイピングタスク,多軸イベントプロセスタイピングについて検討する。
我々は60k以上のイベントプロセスを含む大規模なデータセットを開発し、アクションとオブジェクトタイプの軸の両方に極細粒度のタイピングを特徴とする。
本稿では,Glosses1からの間接的監視によるタイピング問題に対処するハイブリッド学習フレームワークP2GTと,共同学習からランクへのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-13T22:37:29Z) - Discovering Business Area Effects to Process Mining Analysis Using
Clustering and Influence Analysis [0.0]
本稿では,プロセス実行の詳細に重要な影響を与えるビジネス領域を発見するための新しい手法を提案する。
本手法では,プロセスフロー特性に基づいて,クラスタリングを用いて類似事例をグループ化する。
また,公開されている実物購入注文プロセスデータに基づく実物購入の事例分析を行った。
論文 参考訳(メタデータ) (2020-03-18T11:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。