SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2310.10237v2
- Date: Thu, 18 Jul 2024 06:12:41 GMT
- Title: SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
- Authors: Zhihao Ding, Jieming Shi, Shiqi Shen, Xuequn Shang, Jiannong Cao, Zhipeng Wang, Zhi Gong,
- Abstract summary: We present SGOOD, a graph-level OOD detection framework.
We find that substructure differences commonly exist between ID and OOD graphs, and design SGOOD with a series of techniques to encode task-agnostic substructures for effective OOD detection.
Experiments against 11 competitors on numerous graph datasets demonstrate the superiority of SGOOD, often surpassing existing methods by a significant margin.
- Score: 13.734411226834327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-level representation learning is important in a wide range of applications. Existing graph-level models are generally built on i.i.d. assumption for both training and testing graphs. However, in an open world, models can encounter out-of-distribution (OOD) testing graphs that are from different distributions unknown during training. A trustworthy model should be able to detect OOD graphs to avoid unreliable predictions, while producing accurate in-distribution (ID) predictions. To achieve this, we present SGOOD, a novel graph-level OOD detection framework. We find that substructure differences commonly exist between ID and OOD graphs, and design SGOOD with a series of techniques to encode task-agnostic substructures for effective OOD detection. Specifically, we build a super graph of substructures for every graph, and develop a two-level graph encoding pipeline that works on both original graphs and super graphs to obtain substructure-enhanced graph representations. We then devise substructure-preserving graph augmentation techniques to further capture more substructure semantics of ID graphs. Extensive experiments against 11 competitors on numerous graph datasets demonstrate the superiority of SGOOD, often surpassing existing methods by a significant margin. The code is available at https://github.com/TommyDzh/SGOOD.
Related papers
- Subgraph Aggregation for Out-of-Distribution Generalization on Graphs [29.884717215947745]
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention.
We propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs.
Experiments on both synthetic and real-world datasets demonstrate that SuGAr outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-10-29T16:54:37Z) - Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
We propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module.
First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures.
Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model.
arXiv Detail & Related papers (2023-06-29T16:48:00Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
We develop a new graph contrastive learning framework GOOD-D for detecting OOD graphs without using any ground-truth labels.
GOOD-D is able to capture the latent ID patterns and accurately detect OOD graphs based on the semantic inconsistency in different granularities.
As a pioneering work in unsupervised graph-level OOD detection, we build a comprehensive benchmark to compare our proposed approach with different state-of-the-art methods.
arXiv Detail & Related papers (2022-11-08T12:41:58Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding.
In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed.
Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, and graph visualization tasks.
arXiv Detail & Related papers (2020-03-10T02:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.