Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
- URL: http://arxiv.org/abs/2410.22228v1
- Date: Tue, 29 Oct 2024 16:54:37 GMT
- Title: Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
- Authors: Bowen Liu, Haoyang Li, Shuning Wang, Shuo Nie, Shanghang Zhang,
- Abstract summary: Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention.
We propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs.
Experiments on both synthetic and real-world datasets demonstrate that SuGAr outperforms state-of-the-art methods.
- Score: 29.884717215947745
- License:
- Abstract: Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention due to its critical importance in graph-based predictions in real-world scenarios. Existing methods primarily focus on extracting a single causal subgraph from the input graph to achieve generalizable predictions. However, relying on a single subgraph can lead to susceptibility to spurious correlations and is insufficient for learning invariant patterns behind graph data. Moreover, in many real-world applications, such as molecular property prediction, multiple critical subgraphs may influence the target label property. To address these challenges, we propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs that are crucial for OOD generalization on graphs. Specifically, SuGAr employs a tailored subgraph sampler and diversity regularizer to extract a diverse set of invariant subgraphs. These invariant subgraphs are then aggregated by averaging their representations, which enriches the subgraph signals and enhances coverage of the underlying causal structures, thereby improving OOD generalization. Extensive experiments on both synthetic and real-world datasets demonstrate that \ours outperforms state-of-the-art methods, achieving up to a 24% improvement in OOD generalization on graphs. To the best of our knowledge, this is the first work to study graph OOD generalization by learning multiple invariant subgraphs.
Related papers
- Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization [54.64375566326931]
Out-of-distribution (OOD) generalization deals with the prevalent learning scenario where test distribution shifts from training distribution.
We propose to achieve graph OOD generalization with the novel design of non-Euclidean-space linear extrapolation.
Our design tailors OOD samples for specific shifts without corrupting underlying causal mechanisms.
arXiv Detail & Related papers (2023-06-13T18:46:28Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Principle of Relevant Information for Graph Sparsification [27.54740921723433]
Graph sparsification aims to reduce the number of edges of a graph while maintaining its structural properties.
We propose the first general and effective information-theoretic formulation of graph sparsification, by taking inspiration from the Principle of Relevant Information (PRI)
We present three representative real-world applications, namely graph sparsification, graph regularized multi-task learning, and medical imaging-derived brain network classification.
arXiv Detail & Related papers (2022-05-31T21:00:42Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Recognizing Predictive Substructures with Subgraph Information
Bottleneck [97.19131149357234]
We propose a novel subgraph information bottleneck (SIB) framework to recognize such subgraphs, named IB-subgraph.
Intractability of mutual information and the discrete nature of graph data makes the objective of SIB notoriously hard to optimize.
Experiments on graph learning and large-scale point cloud tasks demonstrate the superior property of IB-subgraph.
arXiv Detail & Related papers (2021-03-20T11:19:43Z) - SUGAR: Subgraph Neural Network with Reinforcement Pooling and
Self-Supervised Mutual Information Mechanism [33.135006052347194]
This paper presents a novel hierarchical subgraph-level selection and embedding based graph neural network for graph classification, namely SUGAR.
SUGAR reconstructs a sketched graph by extracting striking subgraphs as the representative part of the original graph to reveal subgraph-level patterns.
To differentiate subgraph representations among graphs, we present a self-supervised mutual information mechanism to encourage subgraph embedding.
arXiv Detail & Related papers (2021-01-20T15:06:16Z) - Graph Information Bottleneck for Subgraph Recognition [103.37499715761784]
We propose a framework of Graph Information Bottleneck (GIB) for the subgraph recognition problem in deep graph learning.
Under this framework, one can recognize the maximally informative yet compressive subgraph, named IB-subgraph.
We evaluate the properties of the IB-subgraph in three application scenarios: improvement of graph classification, graph interpretation and graph denoising.
arXiv Detail & Related papers (2020-10-12T09:32:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.