On the Properties and Estimation of Pointwise Mutual Information Profiles
- URL: http://arxiv.org/abs/2310.10240v2
- Date: Wed, 29 May 2024 09:04:18 GMT
- Title: On the Properties and Estimation of Pointwise Mutual Information Profiles
- Authors: Paweł Czyż, Frederic Grabowski, Julia E. Vogt, Niko Beerenwinkel, Alexander Marx,
- Abstract summary: The pointwise mutual information profile, or simply profile, is the distribution of pointwise mutual information for a given pair of random variables.
We introduce a novel family of distributions, Bend and Mix Models, for which the profile can be accurately estimated using Monte Carlo methods.
- Score: 49.877314063833296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The pointwise mutual information profile, or simply profile, is the distribution of pointwise mutual information for a given pair of random variables. One of its important properties is that its expected value is precisely the mutual information between these random variables. In this paper, we analytically describe the profiles of multivariate normal distributions and introduce a novel family of distributions, Bend and Mix Models, for which the profile can be accurately estimated using Monte Carlo methods. We then show how Bend and Mix Models can be used to study the limitations of existing mutual information estimators, investigate the behavior of neural critics used in variational estimators, and understand the effect of experimental outliers on mutual information estimation. Finally, we show how Bend and Mix Models can be used to obtain model-based Bayesian estimates of mutual information, suitable for problems with available domain expertise in which uncertainty quantification is necessary.
Related papers
- Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
We show how to construct a diverse family of distributions with known ground-truth mutual information.
We provide guidelines for practitioners on how to select appropriate estimator adapted to the difficulty of problem considered.
arXiv Detail & Related papers (2023-06-19T17:26:34Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
We investigate a likelihood approach to nonparametric estimation of a singular distribution using deep generative models.
We prove that a novel and effective solution exists by perturbing the data with an instance noise.
We also characterize the class of distributions that can be efficiently estimated via deep generative models.
arXiv Detail & Related papers (2021-05-09T23:13:58Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
Estimating mutual information between continuous random variables is often intractable and challenging for high-dimensional data.
Recent progress has leveraged neural networks to optimize variational lower bounds on mutual information.
Our approach is based on training a classifier that provides the probability that a data sample pair is drawn from the joint distribution.
arXiv Detail & Related papers (2020-10-05T04:19:27Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.