Time integration schemes based on neural networks for solving partial
differential equations on coarse grids
- URL: http://arxiv.org/abs/2310.10308v1
- Date: Mon, 16 Oct 2023 11:43:08 GMT
- Title: Time integration schemes based on neural networks for solving partial
differential equations on coarse grids
- Authors: Xinxin Yan, Zhideng Zhou, Xiaohan Cheng, Xiaolei Yang
- Abstract summary: We focus on the learning of 3-step linear multistep methods to solve partial differential equations.
We show that the prediction error of the learned fully-constrained scheme is close to that of the Runge-Kutta method and Adams-Bashforth method.
Compared to the traditional methods, the learned unconstrained and semi-constrained schemes significantly reduce the prediction error on coarse grids.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accuracy of solving partial differential equations (PDEs) on coarse grids
is greatly affected by the choice of discretization schemes. In this work, we
propose to learn time integration schemes based on neural networks which
satisfy three distinct sets of mathematical constraints, i.e., unconstrained,
semi-constrained with the root condition, and fully-constrained with both root
and consistency conditions. We focus on the learning of 3-step linear multistep
methods, which we subsequently applied to solve three model PDEs, i.e., the
one-dimensional heat equation, the one-dimensional wave equation, and the
one-dimensional Burgers' equation. The results show that the prediction error
of the learned fully-constrained scheme is close to that of the Runge-Kutta
method and Adams-Bashforth method. Compared to the traditional methods, the
learned unconstrained and semi-constrained schemes significantly reduce the
prediction error on coarse grids. On a grid that is 4 times coarser than the
reference grid, the mean square error shows a reduction of up to an order of
magnitude for some of the heat equation cases, and a substantial improvement in
phase prediction for the wave equation. On a 32 times coarser grid, the mean
square error for the Burgers' equation can be reduced by up to 35% to 40%.
Related papers
- Polynomial-Time Solutions for ReLU Network Training: A Complexity
Classification via Max-Cut and Zonotopes [70.52097560486683]
We prove that the hardness of approximation of ReLU networks not only mirrors the complexity of the Max-Cut problem but also, in certain special cases, exactly corresponds to it.
In particular, when $epsilonleqsqrt84/83-1approx 0.006$, we show that it is NP-hard to find an approximate global dataset of the ReLU network objective with relative error $epsilon$ with respect to the objective value.
arXiv Detail & Related papers (2023-11-18T04:41:07Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
We propose a new approach to learning the subgrid-scale model when simulating partial differential equations (PDEs)
In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid-scale parameterization.
Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers.
arXiv Detail & Related papers (2022-12-20T02:45:09Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Parsimonious Physics-Informed Random Projection Neural Networks for
Initial-Value Problems of ODEs and index-1 DAEs [0.0]
We address a physics-informed neural network based on random projections for the numerical solution of IVPs of nonlinear ODEs in linear-implicit form and index-1 DAEs.
Based on previous works on random projections, we prove the approximation capability of the scheme for ODEs in the canonical form and index-1 DAEs in the semiexplicit form.
arXiv Detail & Related papers (2022-03-10T12:34:46Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Actor-Critic Algorithm for High-dimensional Partial Differential
Equations [1.5644600570264835]
We develop a deep learning model to solve high-dimensional nonlinear parabolic partial differential equations.
The Markovian property of the BSDE is utilized in designing our neural network architecture.
We demonstrate those improvements by solving a few well-known classes of PDEs.
arXiv Detail & Related papers (2020-10-07T20:53:24Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - FiniteNet: A Fully Convolutional LSTM Network Architecture for
Time-Dependent Partial Differential Equations [0.0]
We use a fully convolutional LSTM network to exploit the dynamics of PDEs.
We show that our network can reduce error by a factor of 2 to 3 compared to the baseline algorithms.
arXiv Detail & Related papers (2020-02-07T21:18:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.