Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations
- URL: http://arxiv.org/abs/2310.18897v3
- Date: Wed, 29 Jan 2025 05:26:08 GMT
- Title: Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations
- Authors: Shinhoo Kang, Emil M. Constantinescu,
- Abstract summary: We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.<n>This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.<n>We demonstrate the performance of the proposed framework through two examples.
- Score: 0.1578515540930834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational advances have fundamentally transformed the landscape of numerical simulations, enabling unprecedented levels of complexity and precision in modeling physical phenomena. While these high-fidelity simulations offer invaluable insights for scientific discovery and problem solving, they impose substantial computational requirements. Consequently, low-fidelity models augmented with subgrid-scale parameterizations are employed to achieve computational feasibility. We introduce an end-to-end differentiable framework for solving the compressible Navier--Stokes equations. This integrated approach combines a differentiable discontinuous Galerkin (DG) solver with a neural network source term. Through the implementation of neural ordinary differential equations (NODEs) for network parameter optimization, our methodology ensures continuous interaction with the governing equations throughout the training process. We refer to this approach as NODE-DG. This hybrid approach combines the accuracy of numerical methods with the efficiency of machine learning, offering the following key advantages: (1) enhanced accuracy of low-order DG approximations by capturing subgrid-scale dynamics; (2) robustness to nonuniform and missing temporal data; (3) elimination of operator-splitting errors; and (4) a continuous-in-time operator enabling predictions with variable time step sizes, which accelerates projected high-order DG simulations. We demonstrate the performance of the proposed framework through two examples: two-dimensional Kelvin--Helmholtz instability and three-dimensional Taylor--Green vortex examples.
Related papers
- Enabling Automatic Differentiation with Mollified Graph Neural Operators [75.3183193262225]
We propose the mollified graph neural operator (mGNO), the first method to leverage automatic differentiation and compute emphexact gradients on arbitrary geometries.
For a PDE example on regular grids, mGNO paired with autograd reduced the L2 relative data error by 20x compared to finite differences.
It can also solve PDEs on unstructured point clouds seamlessly, using physics losses only, at resolutions vastly lower than those needed for finite differences to be accurate enough.
arXiv Detail & Related papers (2025-04-11T06:16:30Z) - Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
We introduce Im-PiNDiff, a novel implicit physics-integrated neural differentiable solver for stabletemporal dynamics.
Inspired by deep equilibrium models, Im-PiNDiff advances the state using implicit fixed-point layers, enabling robust long-term simulation.
Im-PiNDiff achieves superior predictive performance, enhanced numerical stability, and substantial reductions in memory and cost.
arXiv Detail & Related papers (2025-04-03T04:07:18Z) - A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach.
The core of DGNet is the synergy of several key strategies.
We present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
We propose a new class of physics-informed neural networks to address the challenges posed by forward, inverse, and mixed problems in differential equations.
Our model consists of two key components: the generator and the encoder, both updated alternately by gradient descent.
In contrast to previous approaches, we employ an indirect matching that operates within the lower-dimensional latent feature space.
arXiv Detail & Related papers (2023-11-03T04:29:49Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Max-affine regression via first-order methods [7.12511675782289]
The max-affine model ubiquitously arises in applications in signal processing and statistics.
We present a non-asymptotic convergence analysis of gradient descent (GD) and mini-batch gradient descent (SGD) for max-affine regression.
arXiv Detail & Related papers (2023-08-15T23:46:44Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
We propose a new approach to learning the subgrid-scale model when simulating partial differential equations (PDEs)
In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid-scale parameterization.
Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers.
arXiv Detail & Related papers (2022-12-20T02:45:09Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - From graphs to DAGs: a low-complexity model and a scalable algorithm [0.0]
This paper presents a low-complexity model, called LoRAM for Low-Rank Additive Model, which combines low-rank matrix factorization with a sparsification mechanism for the continuous optimization of DAGs.
The proposed approach achieves a reduction from a cubic complexity to quadratic complexity while handling the same DAG characteristic function as NoTears.
arXiv Detail & Related papers (2022-04-10T10:22:56Z) - Intermediate Layer Optimization for Inverse Problems using Deep
Generative Models [86.29330440222199]
ILO is a novel optimization algorithm for solving inverse problems with deep generative models.
We empirically show that our approach outperforms state-of-the-art methods introduced in StyleGAN-2 and PULSE for a wide range of inverse problems.
arXiv Detail & Related papers (2021-02-15T06:52:22Z) - Convergence Analysis of Homotopy-SGD for non-convex optimization [43.71213126039448]
We present a first-order algorithm based on a combination of homotopy methods and SGD, called Gradienty-Stoch Descent (H-SGD)
Under some assumptions, we conduct a theoretical analysis of the proposed problem.
Experimental results show that H-SGD can outperform SGD.
arXiv Detail & Related papers (2020-11-20T09:50:40Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Dual Stochastic Natural Gradient Descent and convergence of interior
half-space gradient approximations [0.0]
Multinomial logistic regression (MLR) is widely used in statistics and machine learning.
gradient descent (SGD) is the most common approach for determining the parameters of a MLR model in big data scenarios.
arXiv Detail & Related papers (2020-01-19T00:53:49Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.