Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations
- URL: http://arxiv.org/abs/2310.18897v3
- Date: Wed, 29 Jan 2025 05:26:08 GMT
- Title: Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations
- Authors: Shinhoo Kang, Emil M. Constantinescu,
- Abstract summary: We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.
This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.
We demonstrate the performance of the proposed framework through two examples.
- Score: 0.1578515540930834
- License:
- Abstract: Computational advances have fundamentally transformed the landscape of numerical simulations, enabling unprecedented levels of complexity and precision in modeling physical phenomena. While these high-fidelity simulations offer invaluable insights for scientific discovery and problem solving, they impose substantial computational requirements. Consequently, low-fidelity models augmented with subgrid-scale parameterizations are employed to achieve computational feasibility. We introduce an end-to-end differentiable framework for solving the compressible Navier--Stokes equations. This integrated approach combines a differentiable discontinuous Galerkin (DG) solver with a neural network source term. Through the implementation of neural ordinary differential equations (NODEs) for network parameter optimization, our methodology ensures continuous interaction with the governing equations throughout the training process. We refer to this approach as NODE-DG. This hybrid approach combines the accuracy of numerical methods with the efficiency of machine learning, offering the following key advantages: (1) enhanced accuracy of low-order DG approximations by capturing subgrid-scale dynamics; (2) robustness to nonuniform and missing temporal data; (3) elimination of operator-splitting errors; and (4) a continuous-in-time operator enabling predictions with variable time step sizes, which accelerates projected high-order DG simulations. We demonstrate the performance of the proposed framework through two examples: two-dimensional Kelvin--Helmholtz instability and three-dimensional Taylor--Green vortex examples.
Related papers
- A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach.
The core of DGNet is the synergy of several key strategies.
We present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
We propose a new class of physics-informed neural networks to address the challenges posed by forward, inverse, and mixed problems in differential equations.
Our model consists of two key components: the generator and the encoder, both updated alternately by gradient descent.
In contrast to previous approaches, we employ an indirect matching that operates within the lower-dimensional latent feature space.
arXiv Detail & Related papers (2023-11-03T04:29:49Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
We propose a new approach to learning the subgrid-scale model when simulating partial differential equations (PDEs)
In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid-scale parameterization.
Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers.
arXiv Detail & Related papers (2022-12-20T02:45:09Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast
Training and Evaluation of Neural ODEs [22.976119802895017]
We propose a data-driven approach to the training of neural ordinary differential equations (NODEs)
The proposed approach achieves the same accuracy as adaptive step-size schemes while employing only low-order Taylor expansions.
A suite of numerical experiments demonstrate that TL-NODEs can be trained more than an order of magnitude faster than state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-14T23:56:19Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.