Semi-Supervised Crowd Counting with Contextual Modeling: Facilitating Holistic Understanding of Crowd Scenes
- URL: http://arxiv.org/abs/2310.10352v3
- Date: Sat, 20 Apr 2024 23:18:59 GMT
- Title: Semi-Supervised Crowd Counting with Contextual Modeling: Facilitating Holistic Understanding of Crowd Scenes
- Authors: Yifei Qian, Xiaopeng Hong, Zhongliang Guo, Ognjen Arandjelović, Carl R. Donovan,
- Abstract summary: This paper presents a new semi-supervised method for training a reliable crowd counting model.
We foster the model's intrinsic'subitizing' capability, which allows it to accurately estimate the count in regions.
Our method achieves the state-of-the-art performance, surpassing previous approaches by a large margin on challenging benchmarks.
- Score: 19.987151025364067
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To alleviate the heavy annotation burden for training a reliable crowd counting model and thus make the model more practicable and accurate by being able to benefit from more data, this paper presents a new semi-supervised method based on the mean teacher framework. When there is a scarcity of labeled data available, the model is prone to overfit local patches. Within such contexts, the conventional approach of solely improving the accuracy of local patch predictions through unlabeled data proves inadequate. Consequently, we propose a more nuanced approach: fostering the model's intrinsic 'subitizing' capability. This ability allows the model to accurately estimate the count in regions by leveraging its understanding of the crowd scenes, mirroring the human cognitive process. To achieve this goal, we apply masking on unlabeled data, guiding the model to make predictions for these masked patches based on the holistic cues. Furthermore, to help with feature learning, herein we incorporate a fine-grained density classification task. Our method is general and applicable to most existing crowd counting methods as it doesn't have strict structural or loss constraints. In addition, we observe that the model trained with our framework exhibits a 'subitizing'-like behavior. It accurately predicts low-density regions with only a 'glance', while incorporating local details to predict high-density regions. Our method achieves the state-of-the-art performance, surpassing previous approaches by a large margin on challenging benchmarks such as ShanghaiTech A and UCF-QNRF. The code is available at: https://github.com/cha15yq/MRC-Crowd.
Related papers
- Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models [15.50128790503447]
We propose a novel and theoretically motivated methodology for pre-training data detection, named Min-K%++.
Specifically, we present a key insight that training samples tend to be local maxima of the modeled distribution along each input dimension through likelihood training.
arXiv Detail & Related papers (2024-04-03T04:25:01Z) - Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM [55.93697196726016]
We propose a simple yet effective crowd counting method by utilizing the Segment-Everything-Everywhere Model (SEEM)
We show that SEEM's performance in dense crowd scenes is limited, primarily due to the omission of many persons in high-density areas.
Our proposed method achieves the best unsupervised performance in crowd counting, while also being comparable to some supervised methods.
arXiv Detail & Related papers (2024-02-27T13:55:17Z) - Studying How to Efficiently and Effectively Guide Models with Explanations [52.498055901649025]
'Model guidance' is the idea of regularizing the models' explanations to ensure that they are "right for the right reasons"
We conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets.
Specifically, we guide the models via bounding box annotations, which are much cheaper to obtain than the commonly used segmentation masks.
arXiv Detail & Related papers (2023-03-21T15:34:50Z) - Language Models in the Loop: Incorporating Prompting into Weak
Supervision [11.10422546502386]
We propose a new strategy for applying large pre-trained language models to novel tasks when labeled training data is limited.
Instead of applying the model in a typical zero-shot or few-shot fashion, we treat the model as the basis for labeling functions in a weak supervision framework.
arXiv Detail & Related papers (2022-05-04T20:42:40Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Completely Self-Supervised Crowd Counting via Distribution Matching [92.09218454377395]
We propose a complete self-supervision approach to training models for dense crowd counting.
The only input required to train, apart from a large set of unlabeled crowd images, is the approximate upper limit of the crowd count.
Our method dwells on the idea that natural crowds follow a power law distribution, which could be leveraged to yield error signals for backpropagation.
arXiv Detail & Related papers (2020-09-14T13:20:12Z) - Action Localization through Continual Predictive Learning [14.582013761620738]
We present a new approach based on continual learning that uses feature-level predictions for self-supervision.
We use a stack of LSTMs coupled with CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames.
This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization.
arXiv Detail & Related papers (2020-03-26T23:32:43Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
This paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised)
We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps.
arXiv Detail & Related papers (2020-02-29T02:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.