Continuous Visual Autoregressive Generation via Score Maximization
- URL: http://arxiv.org/abs/2505.07812v1
- Date: Mon, 12 May 2025 17:58:14 GMT
- Title: Continuous Visual Autoregressive Generation via Score Maximization
- Authors: Chenze Shao, Fandong Meng, Jie Zhou,
- Abstract summary: We introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization.<n>Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize.
- Score: 69.67438563485887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional wisdom suggests that autoregressive models are used to process discrete data. When applied to continuous modalities such as visual data, Visual AutoRegressive modeling (VAR) typically resorts to quantization-based approaches to cast the data into a discrete space, which can introduce significant information loss. To tackle this issue, we introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization. The underlying theoretical foundation is strictly proper scoring rules, which provide powerful statistical tools capable of evaluating how well a generative model approximates the true distribution. Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize. We primarily explore a class of training objectives based on the energy score, which is likelihood-free and thus overcomes the difficulty of making probabilistic predictions in the continuous space. Previous efforts on continuous autoregressive generation, such as GIVT and diffusion loss, can also be derived from our framework using other strictly proper scores. Source code: https://github.com/shaochenze/EAR.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
We propose to enforce a emphconsistency property which states that predictions of the model on its own generated data are consistent across time.
We show that our novel training objective yields state-of-the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in AFHQ and FFHQ.
arXiv Detail & Related papers (2023-02-17T18:45:04Z) - Can we achieve robustness from data alone? [0.7366405857677227]
Adversarial training and its variants have come to be the prevailing methods to achieve adversarially robust classification using neural networks.
We devise a meta-learning method for robust classification, that optimize the dataset prior to its deployment in a principled way.
Experiments on MNIST and CIFAR-10 demonstrate that the datasets we produce enjoy very high robustness against PGD attacks.
arXiv Detail & Related papers (2022-07-24T12:14:48Z) - Infinite-Fidelity Coregionalization for Physical Simulation [22.524773932668023]
Multi-fidelity modeling and learning are important in physical simulation-related applications.
We propose Infinite Fidelity Coregionalization (IFC) to exploit rich information within continuous, infinite fidelities.
We show the advantage of our method in several benchmark tasks in computational physics.
arXiv Detail & Related papers (2022-07-01T23:01:10Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.