論文の概要: A decoder-only foundation model for time-series forecasting
- arxiv url: http://arxiv.org/abs/2310.10688v2
- Date: Wed, 31 Jan 2024 19:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 19:01:09.966663
- Title: A decoder-only foundation model for time-series forecasting
- Title(参考訳): 時系列予測のためのデコーダ専用基礎モデル
- Authors: Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou
- Abstract要約: 我々のモデルは,大規模時系列コーパス上でパッチ付きデコーダスタイルのアテンションモデルを事前学習することに基づいている。
予測履歴の長さ、予測長、時間的粒度の異なる範囲でうまく機能する。
- 参考スコア(独自算出の注目度): 26.026559778552205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by recent advances in large language models for Natural Language
Processing (NLP), we design a time-series foundation model for forecasting
whose out-of-the-box zero-shot performance on a variety of public datasets
comes close to the accuracy of state-of-the-art supervised forecasting models
for each individual dataset. Our model is based on pretraining a
patched-decoder style attention model on a large time-series corpus, and can
work well across different forecasting history lengths, prediction lengths and
temporal granularities.
- Abstract(参考訳): 自然言語処理のための大規模言語モデル(nlp)の最近の進歩に動機づけられ、様々なパブリックデータセットにおけるゼロショット性能が各データセットに対する最先端の教師付き予測モデルの精度に近い予測のための時系列基礎モデルを設計する。
提案モデルは,大規模時系列コーパス上でパッチドデコーダ方式の注意モデルを事前学習し,予測履歴長,予測長,時間的粒度など,様々な予測にまたがってうまく機能する。
関連論文リスト
- In-Context Fine-Tuning for Time-Series Foundation Models [18.348874079298298]
特に、複数の時系列例でトリガーできる事前訓練された基礎モデルを設計する。
我々の基礎モデルは、コンテキストウィンドウ内の複数の関連する時系列の例を利用するように特別に訓練されている。
本研究では,テキスト内サンプルを推論時に使用する基盤モデルにより,一般的な予測ベンチマークにおいて,より優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-10-31T16:20:04Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントに28のデータセットが含まれている。
また、約2300億のデータポイントを含む非学習事前学習データセットも提供します。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Scaling Law for Time Series Forecasting [8.967263259533036]
大規模データセット、複雑なモデル、強化されたデータの粒度に報いるスケーリング法則は、ディープラーニングの様々な分野において観察されている。
しかし、時系列予測の研究は、時系列予測のためのディープラーニング手法のスケーリング行動に疑問を投げかけている。
本稿では,このような異常な振る舞いを説明できる時系列予測法則のスケーリング理論を提案する。
論文 参考訳(メタデータ) (2024-05-24T00:46:27Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - PromptCast: A New Prompt-based Learning Paradigm for Time Series
Forecasting [11.670324826998968]
既存の時系列予測手法では,数値列を入力とし,数値列を出力とする。
事前学習された言語基盤モデルの成功に触発されて、我々は新しい予測パラダイム、即時時系列予測を提案する。
この新たなタスクでは、数値入力と出力をプロンプトに変換し、予測タスクを文対文でフレーム化する。
論文 参考訳(メタデータ) (2022-09-20T10:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。