Superconductivity induced by strong electron-exciton coupling in doped atomically thin semiconductor heterostructures
- URL: http://arxiv.org/abs/2310.10726v2
- Date: Tue, 25 Jun 2024 17:34:22 GMT
- Title: Superconductivity induced by strong electron-exciton coupling in doped atomically thin semiconductor heterostructures
- Authors: Jonas von Milczewski, Xin Chen, Atac Imamoglu, Richard Schmidt,
- Abstract summary: We study a mechanism to induce superconductivity in atomically thin semiconductors.
By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence.
- Score: 2.774762581379568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound $s$-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the bipolarons remain relatively light, resulting in critical temperatures of up to 10\% of the Fermi temperature. This renders heterostructures of two-dimensional materials a promising candidate to realize superconductivity at high critical temperatures set by electron doping and trion binding energies.
Related papers
- Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Superfluid drag between excitonic polaritons and superconducting
electron gas [0.0]
The Andreev-Bashkin effect, or superfluid drag, is predicted in a system of Bose-condensed excitonic polaritons in optical microcavity.
The predicted nondissipative drag could be strong enough to be observable as induction of a supercurrent in the electronic layer by a flow of polariton Bose condensate.
arXiv Detail & Related papers (2022-04-22T15:04:46Z) - Theory of Superconductivity Mediated by Topological Phonons [0.0]
Topological phononic insulators are the counterpart of three-dimensional quantum spin Hall insulators in phononic systems.
We propose a theoretical framework for the possible superconducting phase in these materials.
We show that the superconducting critical temperature has a non-monotonic behaviour with respect to the phononic frequency in the Kramers-like point.
arXiv Detail & Related papers (2022-03-07T16:24:07Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Interplay between singlet and triplet pairings in multi-band
two-dimensional oxide superconductors [0.0]
We study the superconducting properties of multi-band two-dimensional transition metal oxide superconductors.
The interplay between the singlet and the triplet pairings affects the dispersion of quasi-particle excitations in the Brillouin zone.
Non-trivial topological superconducting states become stable as a function of the charge density.
arXiv Detail & Related papers (2021-07-02T14:27:55Z) - Room temperature superconductivity dome at a Fano resonance in
superlattices of wires [0.0]
Recently room temperature superconductivity with Tc=15 degrees Celsius has been discovered in a pressurized complex ternary hydride, CSHx, which is a carbon doped H3S alloy.
Here we focus on the electronic structure of materials showing nanoscale heterostructures at atomic limit made of a superlattice of quantum wires.
arXiv Detail & Related papers (2021-05-26T16:04:24Z) - Optically induced topological superconductivity via Floquet interaction
engineering [0.0]
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure.
We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced.
arXiv Detail & Related papers (2020-08-10T18:17:36Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.