Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures
- URL: http://arxiv.org/abs/2410.14887v1
- Date: Fri, 18 Oct 2024 22:25:50 GMT
- Title: Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures
- Authors: Javier Feijóo, Aníbal Iucci, Alejandro M. Lobos,
- Abstract summary: We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
- Score: 44.99833362998488
- License:
- Abstract: We theoretically propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator (SE-SC-FMI) hybrid heterostructures, and investigate its zero-temperature transport properties. While previous related studies have primarily focused on the potential for generating topological superconductors hosting Majorana fermions, we propose an alternative application: using these hybrids to explore controllable quantum phase transitions (QPTs) detectable through transport measurements. Our study highlights two key differences from existing devices: first, the length of the FMI layer is shorter than that of the SE-SC heterostructure, introducing an inhomogeneous Zeeman interaction with significant effects on the induced Andreev bound states (ABS). Second, we focus on semiconductor nanowires with minimal or no Rashba spin-orbit interaction, allowing for the induction of spin-polarized ABS and high-spin quantum ground states. We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage, with zero-energy crossings of subgap ABS as signatures of these transitions. Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
Related papers
- High-fidelity two-qubit gates of hybrid superconducting-semiconducting
singlet-triplet qubits [0.0]
Superconductors induce long-range interactions between the spin degrees of freedom of quantum dots.
We show that this anisotropy is tunable and enables fast and high-fidelity two-qubit gates between singlet-triplet (ST) spin qubits.
Our design is immune to leakage of the quantum information into noncomputational states.
arXiv Detail & Related papers (2023-04-11T09:30:38Z) - Spectroscopy of spin-split Andreev levels in a quantum dot with
superconducting leads [2.6810058988728342]
We use a hybrid superconductor-semiconductor transmon device to perform spectroscopy of a quantum dot Josephson junction tuned to be in a spin-1/2 ground state with an unpaired quasiparticle.
A finite magnetic field shifts the two branches in energy, favoring one spin state and resulting in the anomalous Josephson effect.
arXiv Detail & Related papers (2022-08-19T12:57:08Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Singlet-doublet transitions of a quantum dot Josephson junction detected
in a transmon circuit [2.610856432667959]
Microwave spectroscopy of the transmon's transition spectrum allows us to probe the ground state parity of the quantum dot.
Our results can facilitate the realization of semiconductor-based $0-pi$ qubits and Andreev qubits.
arXiv Detail & Related papers (2022-02-25T15:20:55Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Observation of Distinct Superconducting Phases in Hyperdoped p-type
Germanium [0.0]
We report systematic synthesis and characterization of superconducting phases in hyperdoped Germanium.
Surprisingly, we find a nano-crystalline phase with quasi-2D characteristics consisting of a thin Ga film constrained near top surfaces.
Our results suggest the possibility of integration of hyperdoped Ge nano-crystalline phase into superconducting circuits due to its 2D nature.
arXiv Detail & Related papers (2020-08-13T18:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.