Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments
- URL: http://arxiv.org/abs/2310.10778v1
- Date: Wed, 14 Jun 2023 08:48:46 GMT
- Title: Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments
- Authors: Vishal Karanam
- Abstract summary: IoT as a domain has grown so much in the last few years that it rivals that of the mobile network environments in terms of data volumes as well as cybersecurity threats.
The confidentiality and privacy of data within IoT environments have become very important areas of security research within the last few years.
More and more security experts are interested in designing robust IDS systems to protect IoT environments as a supplement to the more traditional security methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: IoT as a domain has grown so much in the last few years that it rivals that
of the mobile network environments in terms of data volumes as well as
cybersecurity threats. The confidentiality and privacy of data within IoT
environments have become very important areas of security research within the
last few years. More and more security experts are interested in designing
robust IDS systems to protect IoT environments as a supplement to the more
traditional security methods. Given that IoT devices are resource-constrained
and have a heterogeneous protocol stack, most traditional intrusion detection
approaches don't work well within these schematic boundaries. This has led
security researchers to innovate at the intersection of Machine Learning and
IDS to solve the shortcomings of non-learning based IDS systems in the IoT
ecosystem.
Despite various ML algorithms already having high accuracy with IoT datasets,
we can see a lack of sufficient production grade models. This survey paper
details a comprehensive summary of the latest learning-based approaches used in
IoT intrusion detection systems, and conducts a thorough critical review of
these systems, potential pitfalls in ML pipelines, challenges from an ML
perspective, and discusses future research scope and recommendations.
Related papers
- Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
arXiv Detail & Related papers (2024-10-01T19:24:34Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Unraveling Attacks in Machine Learning-based IoT Ecosystems: A Survey
and the Open Libraries Behind Them [9.55194238764852]
The Internet of Things (IoT) has brought forth an era of unprecedented connectivity, with an estimated 80 billion smart devices expected to be in operation by the end of 2025.
Machine Learning (ML) serves as a crucial technology, not only for analyzing IoT-generated data but also for diverse applications within the IoT ecosystem.
This paper embarks on a comprehensive exploration of the security threats arising from ML's integration into various facets of IoT.
arXiv Detail & Related papers (2024-01-22T06:52:35Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
The integration of the Internet of Things (IoT) connects a number of intelligent devices with a minimum of human interference.
Current security approaches can also be improved to protect the IoT environment effectively.
Deep learning (DL)/ machine learning (ML) methods are essential to turn IoT systems protection from simply enabling safe contact between IoT systems to intelligence systems in security.
arXiv Detail & Related papers (2022-10-24T19:02:27Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.