Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security
- URL: http://arxiv.org/abs/2410.01016v2
- Date: Sun, 6 Oct 2024 19:38:56 GMT
- Title: Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security
- Authors: Mona Esmaeili, Morteza Rahimi, Hadise Pishdast, Dorsa Farahmandazad, Matin Khajavi, Hadi Jabbari Saray,
- Abstract summary: Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
- Score: 1.2369895513397127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated. The increase in cyber-attacks that target IoT networks poses a considerable vulnerability and threat to the privacy, security, functionality, and availability of critical systems, which leads to operational disruptions, financial losses, identity thefts, and data breaches. To efficiently secure IoT devices, real-time detection of intrusion systems is critical, especially those using machine learning to identify threats and mitigate risks and vulnerabilities. This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security, concentrating on real-time responsiveness, detection accuracy, and algorithm efficiency. Key studies were reviewed from all well-known academic databases, and a taxonomy was provided for the existing approaches. This review also highlights existing research gaps and outlines the limitations of current IoT security frameworks to offer practical insights for future research directions and developments.
Related papers
- Physical and Software Based Fault Injection Attacks Against TEEs in Mobile Devices: A Systemisation of Knowledge [5.6064476854380825]
Trusted Execution Environments (TEEs) are critical components of modern secure computing.
They provide isolated zones in processors to safeguard sensitive data and execute secure operations.
Despite their importance, TEEs are increasingly vulnerable to fault injection (FI) attacks.
arXiv Detail & Related papers (2024-11-22T11:59:44Z) - A Comprehensive Analysis of Routing Vulnerabilities and Defense Strategies in IoT Networks [0.0]
The Internet of Things (IoT) has revolutionized various domains, offering significant benefits through enhanced interconnectivity and data exchange.
However, the security challenges associated with IoT networks have become increasingly prominent owing to their inherent vulnerability.
This paper provides an in-depth analysis of the network layer in IoT architectures, highlighting the potential risks posed by routing attacks.
arXiv Detail & Related papers (2024-10-17T04:38:53Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT.
We highlighted the common trust-based mitigation techniques in existence for dealing with these threats.
Several open issues were highlighted, and future research directions presented.
arXiv Detail & Related papers (2023-11-20T12:21:35Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.