Gaussian processes based data augmentation and expected signature for
time series classification
- URL: http://arxiv.org/abs/2310.10836v1
- Date: Mon, 16 Oct 2023 21:18:51 GMT
- Title: Gaussian processes based data augmentation and expected signature for
time series classification
- Authors: Marco Romito and Francesco Triggiano
- Abstract summary: We propose a feature extraction model for time series built upon the expected signature.
One of the main features is that an optimal feature extraction is learnt through the supervised task that uses the model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The signature is a fundamental object that describes paths (that is,
continuous functions from an interval to a Euclidean space). Likewise, the
expected signature provides a statistical description of the law of stochastic
processes. We propose a feature extraction model for time series built upon the
expected signature. This is computed through a Gaussian processes based data
augmentation. One of the main features is that an optimal feature extraction is
learnt through the supervised task that uses the model.
Related papers
- On expected signatures and signature cumulants in semimartingale models [0.0]
The concept of signatures and expected signatures is vital in data science, especially for sequential data analysis.
A log-transform (expected signatures) leads to log-signatures (signature cumulants)
arXiv Detail & Related papers (2024-08-09T14:16:21Z) - Universal randomised signatures for generative time series modelling [1.8434042562191815]
We employ randomised signature to introduce a generative model for financial time series data.
Specifically, we propose a novel Wasserstein-type distance based on discrete-time randomised signatures.
We then use our metric as the loss function in a non-adversarial generator model for synthetic time series data.
arXiv Detail & Related papers (2024-06-14T17:49:29Z) - Random Fourier Signature Features [8.766411351797885]
algebras give rise to one of the most powerful measures of similarity for sequences of arbitrary length called the signature kernel.
Previous algorithms to compute the signature kernel scale quadratically in terms of the length and the number of the sequences.
We develop a random Fourier feature-based acceleration of the signature kernel acting on the inherently non-Euclidean domain of sequences.
arXiv Detail & Related papers (2023-11-20T22:08:17Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Towards Symbolic Time Series Representation Improved by Kernel Density
Estimators [0.0]
This paper builds up on the popular mapping technique Symbolic Aggregate approXimation algorithm (SAX)
It is extensively utilized in sequence classification, pattern mining, anomaly detection, time series indexing and other data mining tasks.
We describe here our approach, including evaluation on commonly employed tasks such as time series reconstruction error and Euclidean distance lower bounding with promising improvements over SAX.
arXiv Detail & Related papers (2022-05-25T13:16:18Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Modeling Sequences as Distributions with Uncertainty for Sequential
Recommendation [63.77513071533095]
Most existing sequential methods assume users are deterministic.
Item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests.
We propose a Distribution-based Transformer Sequential Recommendation (DT4SR) which injects uncertainties into sequential modeling.
arXiv Detail & Related papers (2021-06-11T04:35:21Z) - Conditional Sig-Wasserstein GANs for Time Series Generation [8.593063679921109]
Generative adversarial networks (GANs) have been extremely successful in generating samples, from seemingly high dimensional probability measures.
These methods struggle to capture the temporal dependence of joint probability distributions induced by time-series data.
Long time-series data streams hugely increase the dimension of the target space, which may render generative modelling infeasible.
We propose a generic conditional Sig-WGAN framework by integrating Wasserstein-GANs with mathematically principled and efficient path feature extraction.
arXiv Detail & Related papers (2020-06-09T17:38:55Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.