Heterogenous Memory Augmented Neural Networks
- URL: http://arxiv.org/abs/2310.10909v1
- Date: Tue, 17 Oct 2023 01:05:28 GMT
- Title: Heterogenous Memory Augmented Neural Networks
- Authors: Zihan Qiu, Zhen Liu, Shuicheng Yan, Shanghang Zhang, Jie Fu
- Abstract summary: We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
- Score: 84.29338268789684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been shown that semi-parametric methods, which combine standard neural
networks with non-parametric components such as external memory modules and
data retrieval, are particularly helpful in data scarcity and
out-of-distribution (OOD) scenarios. However, existing semi-parametric methods
mostly depend on independent raw data points - this strategy is difficult to
scale up due to both high computational costs and the incapacity of current
attention mechanisms with a large number of tokens. In this paper, we introduce
a novel heterogeneous memory augmentation approach for neural networks which,
by introducing learnable memory tokens with attention mechanism, can
effectively boost performance without huge computational overhead. Our
general-purpose method can be seamlessly combined with various backbones (MLP,
CNN, GNN, and Transformer) in a plug-and-play manner. We extensively evaluate
our approach on various image and graph-based tasks under both in-distribution
(ID) and OOD conditions and show its competitive performance against
task-specific state-of-the-art methods. Code is available at
\url{https://github.com/qiuzh20/HMA}.
Related papers
- EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Recurrent neural networks that generalize from examples and optimize by
dreaming [0.0]
We introduce a generalized Hopfield network where pairwise couplings between neurons are built according to Hebb's prescription for on-line learning.
We let the network experience solely a dataset made of a sample of noisy examples for each pattern.
Remarkably, the sleeping mechanisms always significantly reduce the dataset size required to correctly generalize.
arXiv Detail & Related papers (2022-04-17T08:40:54Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.