Combat Urban Congestion via Collaboration: Heterogeneous GNN-based MARL
for Coordinated Platooning and Traffic Signal Control
- URL: http://arxiv.org/abs/2310.10948v1
- Date: Tue, 17 Oct 2023 02:46:04 GMT
- Title: Combat Urban Congestion via Collaboration: Heterogeneous GNN-based MARL
for Coordinated Platooning and Traffic Signal Control
- Authors: Xianyue Peng, Hang Gao, Hao Wang, H. Michael Zhang
- Abstract summary: This paper proposes an innovative solution to tackle these challenges based on heterogeneous graph multi-agent reinforcement learning and traffic theories.
Our approach involves: 1) designing platoon and signal control as distinct reinforcement learning agents with their own set of observations, actions, and reward functions to optimize traffic flow; 2) designing coordination by incorporating graph neural networks within multi-agent reinforcement learning to facilitate seamless information exchange among agents on a regional scale.
- Score: 16.762073265205565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the years, reinforcement learning has emerged as a popular approach to
develop signal control and vehicle platooning strategies either independently
or in a hierarchical way. However, jointly controlling both in real-time to
alleviate traffic congestion presents new challenges, such as the inherent
physical and behavioral heterogeneity between signal control and platooning, as
well as coordination between them. This paper proposes an innovative solution
to tackle these challenges based on heterogeneous graph multi-agent
reinforcement learning and traffic theories. Our approach involves: 1)
designing platoon and signal control as distinct reinforcement learning agents
with their own set of observations, actions, and reward functions to optimize
traffic flow; 2) designing coordination by incorporating graph neural networks
within multi-agent reinforcement learning to facilitate seamless information
exchange among agents on a regional scale. We evaluate our approach through
SUMO simulation, which shows a convergent result in terms of various
transportation metrics and better performance over sole signal or platooning
control.
Related papers
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative
Bird's Eye View Segmentation for Connected and Autonomous Driving [54.60458503590669]
We propose a unified domain generalization framework applicable in both training and inference stages of collaborative perception.
We employ an Amplitude Augmentation (AmpAug) method to augment low-frequency image variations, broadening the model's ability to learn.
In the inference phase, we introduce an intra-system domain alignment mechanism to reduce or potentially eliminate the domain discrepancy.
arXiv Detail & Related papers (2023-11-28T12:52:49Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph
Reinforcement Learning [42.175067773481416]
We design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation.
Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network.
A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning.
arXiv Detail & Related papers (2023-11-07T06:43:15Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
This paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network.
We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link.
arXiv Detail & Related papers (2023-06-27T16:15:15Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
We study the robustness of deep reinforcement-learning (RL) approaches to control traffic signals.
We show that recent methods remain brittle in the face of missing data.
We propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble.
arXiv Detail & Related papers (2023-06-02T21:30:44Z) - Safety-compliant Generative Adversarial Networks for Human Trajectory
Forecasting [95.82600221180415]
Human forecasting in crowds presents the challenges of modelling social interactions and outputting collision-free multimodal distribution.
We introduce SGANv2, an improved safety-compliant SGAN architecture equipped with motion-temporal interaction modelling and a transformer-based discriminator design.
arXiv Detail & Related papers (2022-09-25T15:18:56Z) - COOR-PLT: A hierarchical control model for coordinating adaptive
platoons of connected and autonomous vehicles at signal-free intersections
based on deep reinforcement learning [0.0]
This study proposes a hierarchical control model, named COOR-PLT, to coordinate adaptive CAV platoons at a signal-free intersection.
The model is validated and examined on the simulator of Urban Mobility (SUMO)
arXiv Detail & Related papers (2022-07-01T02:22:31Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z) - Learning Scalable Multi-Agent Coordination by Spatial Differentiation
for Traffic Signal Control [8.380832628205372]
We design a multiagent coordination framework based on Deep Reinforcement Learning methods for traffic signal control.
Specifically, we propose the Spatial Differentiation method for coordination which uses the temporal-spatial information in the replay buffer to amend the reward of each action.
arXiv Detail & Related papers (2020-02-27T02:16:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.