Semantic Communication for Cooperative Perception using HARQ
- URL: http://arxiv.org/abs/2409.09042v1
- Date: Thu, 29 Aug 2024 08:53:26 GMT
- Title: Semantic Communication for Cooperative Perception using HARQ
- Authors: Yucheng Sheng, Le Liang, Hao Ye, Shi Jin, Geoffrey Ye Li,
- Abstract summary: We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
- Score: 51.148203799109304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative perception, offering a wider field of view than standalone perception, is becoming increasingly crucial in autonomous driving. This perception is enabled through vehicle-to-vehicle (V2V) communication, allowing connected automated vehicles (CAVs) to exchange sensor data, such as light detection and ranging (LiDAR) point clouds, thereby enhancing the collective understanding of the environment. In this paper, we leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework that employs intermediate fusion. To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of orthogonal frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies. Furthermore, recognizing the necessity for reliable transmission, especially in the low SNR scenarios, we introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ). Simulation results show that our model surpasses the traditional separate source-channel coding methods in perception performance, both with and without HARQ. Additionally, in terms of throughput, our proposed HARQ schemes demonstrate superior efficiency to the conventional coding approaches.
Related papers
- Variational Source-Channel Coding for Semantic Communication [6.55201432222942]
The current semantic communication systems are generally modeled as an Auto-Encoder (AE)
AE lacks a deep integration of AI principles with communication strategies due to its inability to effectively capture channel dynamics.
This paper explores the inclusion of data distortion distinguishes semantic communication from classical communication.
A Variational Source-Channel Coding (VSCC) method is proposed for constructing semantic communication systems.
arXiv Detail & Related papers (2024-09-26T03:42:05Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - SmartCooper: Vehicular Collaborative Perception with Adaptive Fusion and
Judger Mechanism [23.824400533836535]
We introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism.
Our results demonstrate a substantial reduction in communication costs by 23.10% compared to the non-judger scheme.
arXiv Detail & Related papers (2024-02-01T04:15:39Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
We study a prototypal system in which an observer must communicate its sensory data to a robot controlling a task.
We consider an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
We tested the proposed approach on the well-known CartPole reference control problem, obtaining a significant performance increase.
arXiv Detail & Related papers (2024-01-29T15:35:05Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
Coordination of robotic swarms and the remote wireless control of industrial systems are among the major use cases for 5G and beyond systems.
In this work, we consider a prototypal system in which an observer must communicate its sensory data to an actor controlling a task.
We propose an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
arXiv Detail & Related papers (2023-01-14T11:43:56Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
We study semantic communication from a topological space perspective.
A transmitter first maps its data into a $k$-order simplicial complex and then learns its high-order correlations.
The receiver decodes the structure and infers the missing or distorted data.
arXiv Detail & Related papers (2022-10-30T22:33:44Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.