論文の概要: Spatially-resolved hyperlocal weather prediction and anomaly detection
using IoT sensor networks and machine learning techniques
- arxiv url: http://arxiv.org/abs/2310.11001v1
- Date: Tue, 17 Oct 2023 05:04:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 17:34:24.308224
- Title: Spatially-resolved hyperlocal weather prediction and anomaly detection
using IoT sensor networks and machine learning techniques
- Title(参考訳): iotセンサネットワークと機械学習技術を用いた超ローカル気象予報と異常検出
- Authors: Anita B. Agarwal, Rohit Rajesh, Nitin Arul
- Abstract要約: 我々は,IoTセンサネットワークと機械学習技術を用いた局部気象予測と異常検出を組み合わせた新しいアプローチを提案する。
本システムは,予測の空間分解能を高め,リアルタイムに異常を効果的に検出することができる。
以上の結果から,本システムは意思決定を促進できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and timely hyperlocal weather predictions are essential for various
applications, ranging from agriculture to disaster management. In this paper,
we propose a novel approach that combines hyperlocal weather prediction and
anomaly detection using IoT sensor networks and advanced machine learning
techniques. Our approach leverages data from multiple spatially-distributed yet
relatively close locations and IoT sensors to create high-resolution weather
models capable of predicting short-term, localized weather conditions such as
temperature, pressure, and humidity. By monitoring changes in weather
parameters across these locations, our system is able to enhance the spatial
resolution of predictions and effectively detect anomalies in real-time.
Additionally, our system employs unsupervised learning algorithms to identify
unusual weather patterns, providing timely alerts. Our findings indicate that
this system has the potential to enhance decision-making.
- Abstract(参考訳): 農業から災害管理まで,様々な用途において,正確な局地的気象予報が不可欠である。
本稿では,IoTセンサネットワークと高度な機械学習技術を用いた局部気象予測と異常検出を組み合わせた新しい手法を提案する。
本研究では,空間分布が比較的近い複数の場所からのデータと,iotセンサを用いて,気温,気圧,湿度などの短時間,局所的な気象条件を予測可能な高分解能気象モデルを構築した。
これらの場所における気象パラメータの変化をモニタすることで,予測の空間分解能を高め,リアルタイムに異常を効果的に検出することができる。
さらに本システムは,教師なしの学習アルゴリズムを用いて異常気象パターンを識別し,タイムリーなアラートを提供する。
以上の結果から,本システムは意思決定を促進できる可能性が示唆された。
関連論文リスト
- Multi-modal graph neural networks for localized off-grid weather forecasting [3.890177521606208]
機械学習や数値気象モデルによる天気予報製品は、現在、グローバル・レギュラー・グリッドで作成されている。
本研究では、異種グラフニューラルネットワーク(GNN)をエンドツーエンドにトレーニングし、グリッド化された予測をダウンスケールして、関心のある場所をオフグリッドする。
提案手法は,グローバルな大規模気象モデルと局所的高精度な予測とのギャップを橋渡しして,局所的な意思決定に役立てることができることを示す。
論文 参考訳(メタデータ) (2024-10-16T18:25:43Z) - Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Optimization of IoT-Enabled Physical Location Monitoring Using DT and
VAR [0.0]
この研究は、決定木(DT)とランダム森林が、センサデータを用いて人を予測するために、合理的に類似したマクロ平均f1スコアを与えることを明らかにした。
DTは、83.99%、88.92%、そして80.97%の精度でタイムスタンプを使用している人を予測するために、3つの異なる物理的位置のクラウドデータセットに対して最も信頼性の高い予測モデルである。
論文 参考訳(メタデータ) (2022-04-10T11:39:46Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Deep Learning for Rain Fade Prediction in Satellite Communications [6.619650459583444]
視線衛星システム、無人航空機、高高度プラットフォーム、マイクロ波リンクは雨の影響を受けやすい。
これらのシステムの降雨量予測は、降雨量発生前の地上ゲートウェイを積極的に切り替えてシームレスなサービスを維持するために重要である。
衛星画像データとレーダー画像データとリンク電力測定を用いて将来の雨害を予測するディープラーニングアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-10-02T00:43:02Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。