Unsupervised Pre-Training Using Masked Autoencoders for ECG Analysis
- URL: http://arxiv.org/abs/2310.11153v1
- Date: Tue, 17 Oct 2023 11:19:51 GMT
- Title: Unsupervised Pre-Training Using Masked Autoencoders for ECG Analysis
- Authors: Guoxin Wang, Qingyuan Wang, Ganesh Neelakanta Iyer, Avishek Nag and
Deepu John
- Abstract summary: This paper proposes an unsupervised pre-training technique based on masked autoencoder (MAE) for electrocardiogram (ECG) signals.
In addition, we propose a task-specific fine-tuning to form a complete framework for ECG analysis.
The framework is high-level, universal, and not individually adapted to specific model architectures or tasks.
- Score: 4.3312979375047025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised learning methods have become increasingly important in deep
learning due to their demonstrated large utilization of datasets and higher
accuracy in computer vision and natural language processing tasks. There is a
growing trend to extend unsupervised learning methods to other domains, which
helps to utilize a large amount of unlabelled data. This paper proposes an
unsupervised pre-training technique based on masked autoencoder (MAE) for
electrocardiogram (ECG) signals. In addition, we propose a task-specific
fine-tuning to form a complete framework for ECG analysis. The framework is
high-level, universal, and not individually adapted to specific model
architectures or tasks. Experiments are conducted using various model
architectures and large-scale datasets, resulting in an accuracy of 94.39% on
the MITDB dataset for ECG arrhythmia classification task. The result shows a
better performance for the classification of previously unseen data for the
proposed approach compared to fully supervised methods.
Related papers
- Self-Supervised Pre-Training with Joint-Embedding Predictive Architecture Boosts ECG Classification Performance [0.0]
We create a large unsupervised pre-training dataset by combining ten public ECG databases.
We pre-train Vision Transformers using JEPA on this dataset and fine-tune them on various PTB-XL benchmarks.
arXiv Detail & Related papers (2024-10-02T08:25:57Z) - Self-Trained Model for ECG Complex Delineation [0.0]
Electrocardiogram (ECG) delineation plays a crucial role in assisting cardiologists with accurate diagnoses.
We introduce a dataset for ECG delineation and propose a novel self-trained method aimed at leveraging a vast amount of unlabeled ECG data.
Our approach involves the pseudolabeling of unlabeled data using a neural network trained on our dataset. Subsequently, we train the model on the newly labeled samples to enhance the quality of delineation.
arXiv Detail & Related papers (2024-06-04T18:54:10Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Core-set Selection Using Metrics-based Explanations (CSUME) for
multiclass ECG [2.0520503083305073]
We show how a selection of good quality data improves deep learning model performance.
Our experimental results show a 9.67% and 8.69% precision and recall improvement with a significant training data volume reduction of 50%.
arXiv Detail & Related papers (2022-05-28T19:36:28Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL [15.552721021992847]
We put forward first benchmarking results for the recently published, freely accessible PTB-XL dataset.
We find that convolutional neural networks, in particular resnet- and inception-based architectures, show the strongest performance across all tasks.
Results are complemented by deeper insights into the classification algorithm in terms of hidden stratification, model uncertainty and an exploratory interpretability analysis.
arXiv Detail & Related papers (2020-04-28T17:55:17Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.