Causal discovery using dynamically requested knowledge
- URL: http://arxiv.org/abs/2310.11154v1
- Date: Tue, 17 Oct 2023 11:21:23 GMT
- Title: Causal discovery using dynamically requested knowledge
- Authors: Neville K Kitson and Anthony C Constantinou
- Abstract summary: Causal Bayesian Networks (CBNs) are an important tool for reasoning under uncertainty in complex real-world systems.
We investigate a novel approach where the structure learning algorithm itself dynamically identifies and requests knowledge for relationships that the algorithm identifies as uncertain.
We show that it offers considerable gains in structural accuracy, which are generally larger than those offered by existing approaches for integrating knowledge.
- Score: 7.904709685523615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal Bayesian Networks (CBNs) are an important tool for reasoning under
uncertainty in complex real-world systems. Determining the graphical structure
of a CBN remains a key challenge and is undertaken either by eliciting it from
humans, using machine learning to learn it from data, or using a combination of
these two approaches. In the latter case, human knowledge is generally provided
to the algorithm before it starts, but here we investigate a novel approach
where the structure learning algorithm itself dynamically identifies and
requests knowledge for relationships that the algorithm identifies as uncertain
during structure learning. We integrate this approach into the Tabu structure
learning algorithm and show that it offers considerable gains in structural
accuracy, which are generally larger than those offered by existing approaches
for integrating knowledge. We suggest that a variant which requests only arc
orientation information may be particularly useful where the practitioner has
little preexisting knowledge of the causal relationships. As well as offering
improved accuracy, the approach can use human expertise more effectively and
contributes to making the structure learning process more transparent.
Related papers
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - Informed Meta-Learning [55.2480439325792]
Meta-learning and informed ML stand out as two approaches for incorporating prior knowledge into ML pipelines.
We formalise a hybrid paradigm, informed meta-learning, facilitating the incorporation of priors from unstructured knowledge representations.
We demonstrate the potential benefits of informed meta-learning in improving data efficiency, robustness to observational noise and task distribution shifts.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - Sample-Efficient Reinforcement Learning in the Presence of Exogenous
Information [77.19830787312743]
In real-world reinforcement learning applications the learner's observation space is ubiquitously high-dimensional with both relevant and irrelevant information about the task at hand.
We introduce a new problem setting for reinforcement learning, the Exogenous Decision Process (ExoMDP), in which the state space admits an (unknown) factorization into a small controllable component and a large irrelevant component.
We provide a new algorithm, ExoRL, which learns a near-optimal policy with sample complexity in the size of the endogenous component.
arXiv Detail & Related papers (2022-06-09T05:19:32Z) - Ontology-enhanced Prompt-tuning for Few-shot Learning [41.51144427728086]
Few-shot Learning is aimed to make predictions based on a limited number of samples.
Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks.
arXiv Detail & Related papers (2022-01-27T05:41:36Z) - Learning Bayesian Networks in the Presence of Structural Side
Information [22.734574764075226]
We study the problem of learning a Bayesian network (BN) of a set of variables when structural side information about the system is available.
We develop an algorithm that efficiently incorporates such knowledge into the learning process.
As a consequence of our work, we show that bounded treewidth BNs can be learned with complexity.
arXiv Detail & Related papers (2021-12-20T22:14:19Z) - Enforcing and Discovering Structure in Machine Learning [18.750116414606698]
It may be prudent to enforce corresponding structural properties to a learning algorithm's solution.
In this dissertation, we consider two different research areas that concern structuring a learning algorithm's solution.
arXiv Detail & Related papers (2021-11-26T15:34:55Z) - A survey of Bayesian Network structure learning [8.411014222942168]
This paper provides a review of 61 algorithms proposed for learning BN structure from data.
The basic approach of each algorithm is described in consistent terms, and the similarities and differences between them highlighted.
Approaches for dealing with data noise in real-world datasets and incorporating expert knowledge into the learning process are also covered.
arXiv Detail & Related papers (2021-09-23T14:54:00Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - Information fusion between knowledge and data in Bayesian network
structure learning [5.994412766684843]
This paper describes and evaluates a set of information fusion methods that have been implemented in the open-source Bayesys structure learning system.
The results are illustrated both with limited and big data, with application to three BN structure learning algorithms available in Bayesys.
arXiv Detail & Related papers (2021-01-31T15:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.