On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future
- URL: http://arxiv.org/abs/2105.12836v1
- Date: Wed, 26 May 2021 20:55:29 GMT
- Title: On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future
- Authors: Unai Garciarena, Nuno Louren\c{c}o, Penousal Machado, Roberto Santana,
Alexander Mendiburu
- Abstract summary: We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
- Score: 60.99717891994599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuroevolutionary algorithms, automatic searches of neural network structures
by means of evolutionary techniques, are computationally costly procedures. In
spite of this, due to the great performance provided by the architectures which
are found, these methods are widely applied. The final outcome of
neuroevolutionary processes is the best structure found during the search, and
the rest of the procedure is commonly omitted in the literature. However, a
good amount of residual information consisting of valuable knowledge that can
be extracted is also produced during these searches. In this paper, we propose
an approach that extracts this information from neuroevolutionary runs, and use
it to build a metamodel that could positively impact future neural architecture
searches. More specifically, by inspecting the best structures found during
neuroevolutionary searches of generative adversarial networks with varying
characteristics (e.g., based on dense or convolutional layers), we propose a
Bayesian network-based model which can be used to either find strong neural
structures right away, conveniently initialize different structural searches
for different problems, or help future optimization of structures of any type
to keep finding increasingly better structures where uninformed methods get
stuck into local optima.
Related papers
- Structure of Artificial Neural Networks -- Empirical Investigations [0.0]
Within one decade, Deep Learning overtook the dominating solution methods of countless problems of artificial intelligence.
With a formal definition for structures of neural networks, neural architecture search problems and solution methods can be formulated under a common framework.
Does structure make a difference or can it be chosen arbitrarily?
arXiv Detail & Related papers (2024-10-12T16:13:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes [0.0]
The research has included four original proposals of algorithms dedicated to neural network architecture search.
Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods.
The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.
arXiv Detail & Related papers (2023-09-25T11:06:35Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm.
We use Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm.
Experiments show that our proposal achieves promising results in all the objectives, and direct relation are presented.
arXiv Detail & Related papers (2023-02-20T19:33:38Z) - HiveNAS: Neural Architecture Search using Artificial Bee Colony
Optimization [0.0]
In this study, we evaluate the viability of Artificial Bee Colony optimization for Neural Architecture Search.
Our proposed framework, HiveNAS, outperforms existing state-of-the-art Swarm Intelligence-based NAS frameworks in a fraction of the time.
arXiv Detail & Related papers (2022-11-18T14:11:47Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - Sampled Training and Node Inheritance for Fast Evolutionary Neural
Architecture Search [22.483917379706725]
evolutionary neural architecture search (ENAS) has received increasing attention due to the attractive global optimization capability of evolutionary algorithms.
This paper proposes a new framework for fast ENAS based on directed acyclic graph, in which parents are randomly sampled and trained on each mini-batch of training data.
We evaluate the proposed algorithm on the widely used datasets, in comparison with 26 state-of-the-art peer algorithms.
arXiv Detail & Related papers (2020-03-07T12:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.