Image Compression using only Attention based Neural Networks
- URL: http://arxiv.org/abs/2310.11265v1
- Date: Tue, 17 Oct 2023 13:38:38 GMT
- Title: Image Compression using only Attention based Neural Networks
- Authors: Natacha Luka, Romain Negrel and David Picard
- Abstract summary: We introduce the concept of learned image queries to aggregate patch information via cross-attention, followed by quantization and coding techniques.
Our work demonstrates competitive performance achieved by convolution-free architectures across the popular Kodak, DIV2K, and CLIC datasets.
- Score: 13.126014437648612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent research, Learned Image Compression has gained prominence for its
capacity to outperform traditional handcrafted pipelines, especially at low
bit-rates. While existing methods incorporate convolutional priors with
occasional attention blocks to address long-range dependencies, recent advances
in computer vision advocate for a transformative shift towards fully
transformer-based architectures grounded in the attention mechanism. This paper
investigates the feasibility of image compression exclusively using attention
layers within our novel model, QPressFormer. We introduce the concept of
learned image queries to aggregate patch information via cross-attention,
followed by quantization and coding techniques. Through extensive evaluations,
our work demonstrates competitive performance achieved by convolution-free
architectures across the popular Kodak, DIV2K, and CLIC datasets.
Related papers
- UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Joint Global and Local Hierarchical Priors for Learned Image Compression [30.44884350320053]
Recently, learned image compression methods have shown superior performance compared to the traditional hand-crafted image codecs.
We propose a novel entropy model called Information Transformer (Informer) that exploits both local and global information in a content-dependent manner.
Our experiments demonstrate that Informer improves rate-distortion performance over the state-of-the-art methods on the Kodak and Tecnick datasets.
arXiv Detail & Related papers (2021-12-08T06:17:37Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.