UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation
- URL: http://arxiv.org/abs/2405.16850v1
- Date: Mon, 27 May 2024 05:52:13 GMT
- Title: UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation
- Authors: Runzhao Yang, Yinda Chen, Zhihong Zhang, Xiaoyu Liu, Zongren Li, Kunlun He, Zhiwei Xiong, Jinli Suo, Qionghai Dai,
- Abstract summary: Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
- Score: 59.3877309501938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of medical image compression, Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios, yet they are constrained by a one-to-one fitting approach that results in lengthy encoding times. Our novel method, ``\textbf{UniCompress}'', innovatively extends the compression capabilities of INR by being the first to compress multiple medical data blocks using a single INR network. By employing wavelet transforms and quantization, we introduce a codebook containing frequency domain information as a prior input to the INR network. This enhances the representational power of INR and provides distinctive conditioning for different image blocks. Furthermore, our research introduces a new technique for the knowledge distillation of implicit representations, simplifying complex model knowledge into more manageable formats to improve compression ratios. Extensive testing on CT and electron microscopy (EM) datasets has demonstrated that UniCompress outperforms traditional INR methods and commercial compression solutions like HEVC, especially in complex and high compression scenarios. Notably, compared to existing INR techniques, UniCompress achieves a 4$\sim$5 times increase in compression speed, marking a significant advancement in the field of medical image compression. Codes will be publicly available.
Related papers
- Streaming Neural Images [56.41827271721955]
Implicit Neural Representations (INRs) are a novel paradigm for signal representation that have attracted considerable interest for image compression.
In this work, we explore the critical yet overlooked limiting factors of INRs, such as computational cost, unstable performance, and robustness.
arXiv Detail & Related papers (2024-09-25T17:51:20Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network [0.0]
This paper introduces a hardware-friendly streaming lossless volumetric compression framework.
We propose a gated recurrent convolutional neural network that combines diverse convolutional structures and fusion gate mechanisms.
Our method exhibits robust generalization ability and competitive compression speed.
arXiv Detail & Related papers (2023-11-27T07:19:09Z) - Image Compression and Decompression Framework Based on Latent Diffusion
Model for Breast Mammography [0.0]
This research presents a novel framework for the compression and decompression of medical images utilizing the Latent Diffusion Model (LDM)
The LDM represents advancement over the denoising diffusion probabilistic model (DDPM) with a potential to yield superior image quality.
A possible application of LDM and Torchvision for image upscaling has been explored using medical image data.
arXiv Detail & Related papers (2023-10-08T22:08:59Z) - Convolutional Neural Network (CNN) to reduce construction loss in JPEG
compression caused by Discrete Fourier Transform (DFT) [0.0]
Convolutional Neural Networks (CNN) have received more attention than most other types of deep neural networks.
In this work, an effective image compression method is purposed using autoencoders.
arXiv Detail & Related papers (2022-08-26T12:46:16Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - ANFIC: Image Compression Using Augmented Normalizing Flows [16.161901495436233]
This paper introduces an end-to-end learned image compression system, termed ANFIC, based on Augmented Normalizing Flows (ANF)
In terms of PSNR-RGB, ANFIC performs comparably to or better than the state-of-the-art learned image compression.
In particular, ANFIC achieves the state-of-the-art performance, when extended with conditional convolution for variable rate compression with a single model.
arXiv Detail & Related papers (2021-07-18T15:02:31Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.