論文の概要: Agent-Specific Effects: A Causal Effect Propagation Analysis in
Multi-Agent MDPs
- arxiv url: http://arxiv.org/abs/2310.11334v2
- Date: Sun, 4 Feb 2024 15:17:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 04:28:12.504956
- Title: Agent-Specific Effects: A Causal Effect Propagation Analysis in
Multi-Agent MDPs
- Title(参考訳): エージェント特異的効果:マルチエージェントMDPにおける因果効果伝搬解析
- Authors: Stelios Triantafyllou, Aleksa Sukovic, Debmalya Mandal, Goran
Radanovic
- Abstract要約: エージェント特異的効果(ASE)は、エージェントの作用が他のエージェントを介して伝播する結果に与える影響を測定する新しい因果量である。
我々は,敗血症管理環境を含むシミュレーションベースのテストベッドを用いて,cf-ASEの有用性を実験的に評価した。
- 参考スコア(独自算出の注目度): 14.509462688246233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Establishing causal relationships between actions and outcomes is fundamental
for accountable multi-agent decision-making. However, interpreting and
quantifying agents' contributions to such relationships pose significant
challenges. These challenges are particularly prominent in the context of
multi-agent sequential decision-making, where the causal effect of an agent's
action on the outcome depends on how other agents respond to that action. In
this paper, our objective is to present a systematic approach for attributing
the causal effects of agents' actions to the influence they exert on other
agents. Focusing on multi-agent Markov decision processes, we introduce
agent-specific effects (ASE), a novel causal quantity that measures the effect
of an agent's action on the outcome that propagates through other agents. We
then turn to the counterfactual counterpart of ASE (cf-ASE), provide a
sufficient set of conditions for identifying cf-ASE, and propose a practical
sampling-based algorithm for estimating it. Finally, we experimentally evaluate
the utility of cf-ASE through a simulation-based testbed, which includes a
sepsis management environment.
- Abstract(参考訳): 行動と成果の因果関係を確立することは、説明責任のあるマルチエージェントの意思決定に不可欠である。
しかし、そのような関係に対するエージェントの貢献の解釈と定量化は大きな課題となる。
これらの課題は、エージェントの行動が結果に与える因果効果が、他のエージェントがその行動にどう反応するかに依存するマルチエージェントのシーケンシャルな意思決定の文脈において特に顕著である。
本稿では,エージェントの行動が他のエージェントに与える影響に因果的影響をもたらすための体系的アプローチを提案する。
我々は,マルチエージェントマルコフ決定プロセスに着目し,エージェント特異的効果 (ase) について紹介する。
次に, ASE (cf-ASE) の対実的対応に目を向け, cf-ASE の同定に十分な条件セットを提供し, その推定のための実用的なサンプリングベースアルゴリズムを提案する。
最後に,セプシス管理環境を含むシミュレーションベースのテストベッドを用いてcf-aseの有用性を実験的に評価した。
関連論文リスト
- Counterfactual Effect Decomposition in Multi-Agent Sequential Decision Making [9.469649321687928]
本稿では,各エージェントに寄与し,各エージェントに寄与し,各要因に寄与するスコアを変動させることにより,その効果を分解する新たな因果的説明式を提案する。
エージェントの作用の総合的反事実効果は, エージェントの作用を伝播する効果を計測する要素と, 状態遷移を伝播する効果に関連する要素の2つに分解できることを示す。
論文 参考訳(メタデータ) (2024-10-16T13:20:35Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Causal Influence in Federated Edge Inference [34.487472866247586]
本稿では、未ラベルのストリーミングデータを用いて、接続性のある異種エージェントが推論を行う環境について考察する。
不確実性を克服するために、エージェントは、融合センターを通じてローカルな推論を交換することで互いに協力する。
エージェントの関与パターンや核融合センターの方針を反映した様々なシナリオを考察した。
論文 参考訳(メタデータ) (2024-05-02T13:06:50Z) - Situation-Dependent Causal Influence-Based Cooperative Multi-agent
Reinforcement Learning [18.054709749075194]
我々は、状況依存因果関係に基づく協調マルチエージェント強化学習(SCIC)という新しいMARLアルゴリズムを提案する。
本研究の目的は,特定の状況におけるエージェント間因果関係の影響を,因果介入と条件付き相互情報を用いて検出することである。
結果として得られたアップデートは、協調した探索と本質的な報酬分布をリンクし、全体的なコラボレーションとパフォーマンスを高めた。
論文 参考訳(メタデータ) (2023-12-15T05:09:32Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - Causal Strategic Learning with Competitive Selection [10.237954203296187]
複数の意思決定者の下で因果戦略学習におけるエージェント選択の問題について検討する。
最適な選択規則は、最適なエージェントを選択することと、エージェントの改善を最大化するためのインセンティブを提供することの間のトレードオフであることを示す。
我々は、真の因果パラメータを回復するために、すべての意思決定者がまとめて採用しなければならない協調プロトコルを提供する。
論文 参考訳(メタデータ) (2023-08-30T18:43:11Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
我々はエージェントの行動差を定量化し、bfロールの多様性を通して政策パフォーマンスとの関係を構築する
MARLの誤差は, 役割多様性と強い関係を持つ3つの部分に分けられる。
分解された要因は3つの一般的な方向における政策最適化に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-06-01T04:58:52Z) - Robust Event-Driven Interactions in Cooperative Multi-Agent Learning [0.0]
本稿では,マルチエージェント学習システムにおけるエージェント間の通信を,基礎となるマルコフ決定プロセスの本質的ロバスト性を利用して削減する手法を提案する。
いわゆるロバストネス代理関数(オフライン)を計算し、エージェントがシステム内の他のエージェントを更新する前に、その状態の測定値がどれくらい逸脱するかを保守的に示す。
これにより、完全に分散された決定関数が実現され、エージェントが他を更新する必要があるかどうかを判断できるようになる。
論文 参考訳(メタデータ) (2022-04-07T11:00:39Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。