論文の概要: Differentially Private Data Generation with Missing Data
- arxiv url: http://arxiv.org/abs/2310.11548v2
- Date: Thu, 30 May 2024 19:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:31:38.664133
- Title: Differentially Private Data Generation with Missing Data
- Title(参考訳): 欠測データを用いた微分プライベートデータ生成
- Authors: Shubhankar Mohapatra, Jianqiao Zong, Florian Kerschbaum, Xi He,
- Abstract要約: 我々は、差分プライバシー(DP)合成データの問題点を、欠落した値で定式化する。
本稿では,合成データの有効性を大幅に向上させる3つの効果的な適応戦略を提案する。
全体として、この研究は、プライベートな合成データ生成アルゴリズムを使用する際の課題と機会をより深く理解することに貢献している。
- 参考スコア(独自算出の注目度): 25.242190235853595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite several works that succeed in generating synthetic data with differential privacy (DP) guarantees, they are inadequate for generating high-quality synthetic data when the input data has missing values. In this work, we formalize the problems of DP synthetic data with missing values and propose three effective adaptive strategies that significantly improve the utility of the synthetic data on four real-world datasets with different types and levels of missing data and privacy requirements. We also identify the relationship between privacy impact for the complete ground truth data and incomplete data for these DP synthetic data generation algorithms. We model the missing mechanisms as a sampling process to obtain tighter upper bounds for the privacy guarantees to the ground truth data. Overall, this study contributes to a better understanding of the challenges and opportunities for using private synthetic data generation algorithms in the presence of missing data.
- Abstract(参考訳): 差分プライバシー(DP)保証付き合成データの生成に成功している研究はいくつかあるが、入力データが欠落している場合に高品質な合成データを生成するには不十分である。
そこで本研究では,DP合成データの問題点を形式化し,データとプライバシ要件の異なる4つの実世界のデータセットにおける合成データの実用性を大幅に向上させる3つの効果的な適応戦略を提案する。
また,これらDP合成データ生成アルゴリズムの完全真実データに対するプライバシーの影響と不完全データとの関係についても検討する。
我々は、欠落したメカニズムをサンプリングプロセスとしてモデル化し、真理データに対するプライバシー保証のより厳密な上限を得る。
全体として、この研究は、欠落したデータの存在下で、プライベートな合成データ生成アルゴリズムを使用する際の課題と機会をより深く理解することに貢献している。
関連論文リスト
- Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
プライバシーは学習分析(LA)の進歩に大きな障害となり、匿名化の不十分さやデータ誤用といった課題を提示している。
合成データは潜在的な対策として現れ、堅牢なプライバシー保護を提供する。
LAの合成データに関する以前の研究では、プライバシーとデータユーティリティの微妙なバランスを評価するのに不可欠な、徹底的な評価が欠如していた。
論文 参考訳(メタデータ) (2024-01-12T20:27:55Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
a) Howsoエンジンを導入し、(b)ランダムプロジェクションに基づく合成データ生成フレームワークを提案する。
Howsoエンジンが生成する合成データは、プライバシーと正確性に優れており、その結果、総合的なスコアが最高の結果となる。
提案するランダム・プロジェクション・ベース・フレームワークは,高い精度で合成データを生成することができ,スケーラビリティが最速である。
論文 参考訳(メタデータ) (2023-12-09T02:04:25Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - PreFair: Privately Generating Justifiably Fair Synthetic Data [17.037575948075215]
PreFairは、差分プライバシー(DP)公正な合成データ生成を可能にするシステムである。
我々は、合成データ生成シナリオに適合する正当性の概念に適応する。
論文 参考訳(メタデータ) (2022-12-20T15:01:54Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
Model-CentricからData-Centricへの転換は、アルゴリズムよりもデータとその品質に重点を置いている。
特に、高度に規制されたシナリオにおける情報のセンシティブな性質を考慮する必要がある。
このようなコンウンドラムをバイパスする巧妙な方法は、生成プロセスから得られたデータであるSynthetic Dataに依存し、実際のデータプロパティを学習する。
論文 参考訳(メタデータ) (2022-04-13T10:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。