Improved Sample Complexity Analysis of Natural Policy Gradient Algorithm
with General Parameterization for Infinite Horizon Discounted Reward Markov
Decision Processes
- URL: http://arxiv.org/abs/2310.11677v2
- Date: Mon, 5 Feb 2024 15:33:18 GMT
- Title: Improved Sample Complexity Analysis of Natural Policy Gradient Algorithm
with General Parameterization for Infinite Horizon Discounted Reward Markov
Decision Processes
- Authors: Washim Uddin Mondal and Vaneet Aggarwal
- Abstract summary: We propose the Natural Accelerated Policy Gradient (PGAN) algorithm that utilizes an accelerated gradient descent process to obtain the natural policy gradient.
An iteration achieves $mathcalO(epsilon-2)$ sample complexity and $mathcalO(epsilon-1)$ complexity.
In the class of Hessian-free and IS-free algorithms, ANPG beats the best-known sample complexity by a factor of $mathcalO(epsilon-frac12)$ and simultaneously matches their state-of
- Score: 41.61653528766776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of designing sample efficient learning algorithms for
infinite horizon discounted reward Markov Decision Process. Specifically, we
propose the Accelerated Natural Policy Gradient (ANPG) algorithm that utilizes
an accelerated stochastic gradient descent process to obtain the natural policy
gradient. ANPG achieves $\mathcal{O}({\epsilon^{-2}})$ sample complexity and
$\mathcal{O}(\epsilon^{-1})$ iteration complexity with general parameterization
where $\epsilon$ defines the optimality error. This improves the
state-of-the-art sample complexity by a $\log(\frac{1}{\epsilon})$ factor. ANPG
is a first-order algorithm and unlike some existing literature, does not
require the unverifiable assumption that the variance of importance sampling
(IS) weights is upper bounded. In the class of Hessian-free and IS-free
algorithms, ANPG beats the best-known sample complexity by a factor of
$\mathcal{O}(\epsilon^{-\frac{1}{2}})$ and simultaneously matches their
state-of-the-art iteration complexity.
Related papers
- Provable Policy Gradient Methods for Average-Reward Markov Potential
Games [15.136494705127564]
We study Markov potential games under the infinite horizon average reward criterion.
We prove that both algorithms based on independent policy gradient and independent natural policy gradient converge globally to a Nash equilibrium for the average reward criterion.
arXiv Detail & Related papers (2024-03-09T00:20:33Z) - Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs [60.40452803295326]
We propose a new reward-free algorithm for learning linear Markov decision processes (MDPs)
At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward.
We show that our algorithm only needs to explore $tilde O( d2varepsilon-2)$ episodes to find an $varepsilon$-optimal policy.
arXiv Detail & Related papers (2023-03-17T17:53:28Z) - Stochastic Policy Gradient Methods: Improved Sample Complexity for
Fisher-non-degenerate Policies [19.779044926914704]
We develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies.
In this work, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a $tildemathcalO(varepsilon-2.5)$ sample complexity of this method.
We further improve this complexity to $tilde mathcalmathcalO (varepsilon-2)$ by considering a Hessian-Aided Recursive Policy Gradient
arXiv Detail & Related papers (2023-02-03T13:50:23Z) - Finite-Time Error Bounds for Greedy-GQ [20.51105692499517]
We show that Greedy-GQ algorithm converges fast as finite-time error.
Our analysis provides for faster convergence step-sizes for choosing step-sizes.
arXiv Detail & Related papers (2022-09-06T15:04:57Z) - Sample Complexity Bounds for Two Timescale Value-based Reinforcement
Learning Algorithms [65.09383385484007]
Two timescale approximation (SA) has been widely used in value-based reinforcement learning algorithms.
We study the non-asymptotic convergence rate of two timescale linear and nonlinear TDC and Greedy-GQ algorithms.
arXiv Detail & Related papers (2020-11-10T11:36:30Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Stochastic Multi-level Composition Optimization Algorithms with
Level-Independent Convergence Rates [12.783783498844022]
We study smooth multi-level composition optimization problems, where the objective function is a nested composition of $T$ functions.
We show that the first algorithm, which is a generalization of citeGhaRuswan20 to the $T$ level case, can achieve a sample complexity of $mathcalO (1/epsilon$6)
This is the first time that such an online algorithm designed for the (un) multi-level setting, obtains the same sample complexity under standard assumptions.
arXiv Detail & Related papers (2020-08-24T15:57:50Z) - Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms [58.57004511121862]
This paper characterizes the convergence rate and sample complexity of AC and NAC under Markovian sampling.
We show that AC and NAC attain orderwise performance improvement over PG and NPG under infinite horizon due to the incorporation of critic.
arXiv Detail & Related papers (2020-04-27T17:11:06Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
We develop and analyze minibatch variants of gradient algorithm for general composite objective functions with nonsmooth components.
We provide complexity for constant and variable stepsize iteration policies obtaining that, for minibatch size $N$, after $mathcalO(frac1Nepsilon)$ $epsilon-$subity is attained in expected quadratic distance to optimal solution.
arXiv Detail & Related papers (2020-03-30T10:43:56Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.