Descriptive Knowledge Graph in Biomedical Domain
- URL: http://arxiv.org/abs/2310.11681v1
- Date: Wed, 18 Oct 2023 03:10:25 GMT
- Title: Descriptive Knowledge Graph in Biomedical Domain
- Authors: Kerui Zhu, Jie Huang, Kevin Chen-Chuan Chang
- Abstract summary: We present a novel system that automatically extracts and generates informative and descriptive sentences from the biomedical corpus.
Unlike previous search engines or exploration systems that retrieve unconnected passages, our system organizes descriptive sentences as a graph.
We spotlight the application of our system in COVID-19 research, illustrating its utility in areas such as drug repurposing and literature curation.
- Score: 26.91431888505873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel system that automatically extracts and generates
informative and descriptive sentences from the biomedical corpus and
facilitates the efficient search for relational knowledge. Unlike previous
search engines or exploration systems that retrieve unconnected passages, our
system organizes descriptive sentences as a relational graph, enabling
researchers to explore closely related biomedical entities (e.g., diseases
treated by a chemical) or indirectly connected entities (e.g., potential drugs
for treating a disease). Our system also uses ChatGPT and a fine-tuned relation
synthesis model to generate concise and reliable descriptive sentences from
retrieved information, reducing the need for extensive human reading effort.
With our system, researchers can easily obtain both high-level knowledge and
detailed references and interactively steer to the information of interest. We
spotlight the application of our system in COVID-19 research, illustrating its
utility in areas such as drug repurposing and literature curation.
Related papers
- Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
Large language models (LLMs) are transforming the way information is retrieved with vast amounts of knowledge being summarized and presented.
LLMs are prone to highlight the most frequently seen pieces of information from the training set and to neglect the rare ones.
We introduce a novel information-retrieval method that leverages a knowledge graph to downsample these clusters and mitigate the information overload problem.
arXiv Detail & Related papers (2024-02-19T18:31:11Z) - DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
Traditional keyword-based search engines fall short in assisting users who may not be familiar with specific terminologies.
We present a knowledge graph-based paper search engine for biomedical research to enhance the user experience.
The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG.
arXiv Detail & Related papers (2023-09-04T20:52:33Z) - Data-Driven Information Extraction and Enrichment of Molecular Profiling
Data for Cancer Cell Lines [1.1999555634662633]
This work presents the design, implementation and application of a novel data extraction and exploration system.
We introduce a new public data exploration portal, which enables automatic linking of genomic copy number variants plots with ranked, related entities.
Our system is publicly available on the web at https://cancercelllines.org.
arXiv Detail & Related papers (2023-07-03T11:15:42Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data.
Recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery.
arXiv Detail & Related papers (2023-02-16T12:38:01Z) - Knowledge-augmented Graph Neural Networks with Concept-aware Attention for Adverse Drug Event Detection [9.334701229573739]
Adverse drug events (ADEs) are an important aspect of drug safety.
Various texts contain a wealth of information about ADEs.
Recent studies have applied word embedding and deep learning -based natural language processing to automate ADE detection from text.
We propose a concept-aware attention mechanism which learns features differently for the different types of nodes in the graph.
arXiv Detail & Related papers (2023-01-25T08:01:45Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z) - COVID-19 Literature Knowledge Graph Construction and Drug Repurposing
Report Generation [79.33545724934714]
We have developed a novel and comprehensive knowledge discovery framework, COVID-KG, to extract fine-grained multimedia knowledge elements from scientific literature.
Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence.
arXiv Detail & Related papers (2020-07-01T16:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.