DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research
- URL: http://arxiv.org/abs/2309.01808v2
- Date: Tue, 10 Oct 2023 22:30:42 GMT
- Title: DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research
- Authors: Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Kwei-Herng Lai, Daochen
Zha, Ruixiang Tang, Fan Yang, Alfredo Costilla Reyes, Kaixiong Zhou, Xiaoqian
Jiang, Xia Hu
- Abstract summary: Traditional keyword-based search engines fall short in assisting users who may not be familiar with specific terminologies.
We present a knowledge graph-based paper search engine for biomedical research to enhance the user experience.
The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG.
- Score: 96.10765714077208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exponential growth in scholarly publications necessitates advanced tools
for efficient article retrieval, especially in interdisciplinary fields where
diverse terminologies are used to describe similar research. Traditional
keyword-based search engines often fall short in assisting users who may not be
familiar with specific terminologies. To address this, we present a knowledge
graph-based paper search engine for biomedical research to enhance the user
experience in discovering relevant queries and articles. The system, dubbed
DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS)
tagging to extract terminologies and relationships from article abstracts to
create a KG. To reduce information overload, DiscoverPath presents users with a
focused subgraph containing the queried entity and its neighboring nodes and
incorporates a query recommendation system, enabling users to iteratively
refine their queries. The system is equipped with an accessible Graphical User
Interface that provides an intuitive visualization of the KG, query
recommendations, and detailed article information, enabling efficient article
retrieval, thus fostering interdisciplinary knowledge exploration. DiscoverPath
is open-sourced at https://github.com/ynchuang/DiscoverPath.
Related papers
- Taxonomy-guided Semantic Indexing for Academic Paper Search [51.07749719327668]
TaxoIndex is a semantic index framework for academic paper search.
It organizes key concepts from papers as a semantic index guided by an academic taxonomy.
It can be flexibly employed to enhance existing dense retrievers.
arXiv Detail & Related papers (2024-10-25T00:00:17Z) - Conversational Exploratory Search of Scholarly Publications Using Knowledge Graphs [3.3916160303055567]
We develop a conversational search system for exploring scholarly publications using a knowledge graph.
To assess the system's effectiveness, we employed various performance metrics and conducted a human evaluation with 40 participants.
arXiv Detail & Related papers (2024-10-01T06:16:07Z) - Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature [48.572336666741194]
We present Knowledge Navigator, a system designed to enhance exploratory search abilities.
It organizes retrieved documents into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics.
arXiv Detail & Related papers (2024-08-28T14:48:37Z) - NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing [3.3916160303055567]
NLP-KG is a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing fields.
In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest.
A Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas.
arXiv Detail & Related papers (2024-06-21T16:38:22Z) - Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
We introduce ToTER (Topical taxonomy Enhanced Retrieval) framework.
ToTER identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts.
As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers.
arXiv Detail & Related papers (2024-03-07T02:34:54Z) - Descriptive Knowledge Graph in Biomedical Domain [26.91431888505873]
We present a novel system that automatically extracts and generates informative and descriptive sentences from the biomedical corpus.
Unlike previous search engines or exploration systems that retrieve unconnected passages, our system organizes descriptive sentences as a graph.
We spotlight the application of our system in COVID-19 research, illustrating its utility in areas such as drug repurposing and literature curation.
arXiv Detail & Related papers (2023-10-18T03:10:25Z) - Decomposing Complex Queries for Tip-of-the-tongue Retrieval [72.07449449115167]
Complex queries describe content elements (e.g., book characters or events), information beyond the document text.
This retrieval setting, called tip of the tongue (TOT), is especially challenging for models reliant on lexical and semantic overlap between query and document text.
We introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results.
arXiv Detail & Related papers (2023-05-24T11:43:40Z) - MORTY: Structured Summarization for Targeted Information Extraction from
Scholarly Articles [0.0]
We present MORTY, an information extraction technique that creates structured summaries of text from scholarly articles.
Our approach condenses the article's full-text to property-value pairs as a segmented text snippet called structured summary.
We also present a sizable scholarly dataset combining structured summaries retrieved from a scholarly knowledge graph and corresponding publicly available scientific articles.
arXiv Detail & Related papers (2022-12-11T06:49:29Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.