論文の概要: MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers
- arxiv url: http://arxiv.org/abs/2310.11706v1
- Date: Wed, 18 Oct 2023 04:36:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 02:13:39.544708
- Title: MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers
- Title(参考訳): MalDICT: マルウェアの挙動、プラットフォーム、爆発、パッケージに関するベンチマークデータセット
- Authors: Robert J. Joyce, Edward Raff, Charles Nicholas, James Holt,
- Abstract要約: マルウェア分類に関する既存の研究は、悪意のあるファイルと良性のあるファイルの区別と、家族によるマルウェアの分類という2つのタスクにのみ焦点をあてている。
我々は、マルウェアが提示する行動の分類、マルウェアが実行しているプラットフォーム、マルウェアが悪用する脆弱性、マルウェアが詰め込まれているパッカーの4つのタスクを特定した。
ClarAVyを使ってタグ付けされ、合計で550万近い悪意のあるファイルで構成されています。
- 参考スコア(独自算出の注目度): 44.700094741798445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing research on malware classification focuses almost exclusively on two tasks: distinguishing between malicious and benign files and classifying malware by family. However, malware can be categorized according to many other types of attributes, and the ability to identify these attributes in newly-emerging malware using machine learning could provide significant value to analysts. In particular, we have identified four tasks which are under-represented in prior work: classification by behaviors that malware exhibit, platforms that malware run on, vulnerabilities that malware exploit, and packers that malware are packed with. To obtain labels for training and evaluating ML classifiers on these tasks, we created an antivirus (AV) tagging tool called ClarAVy. ClarAVy's sophisticated AV label parser distinguishes itself from prior AV-based taggers, with the ability to accurately parse 882 different AV label formats used by 90 different AV products. We are releasing benchmark datasets for each of these four classification tasks, tagged using ClarAVy and comprising nearly 5.5 million malicious files in total. Our malware behavior dataset includes 75 distinct tags - nearly 7x more than the only prior benchmark dataset with behavioral tags. To our knowledge, we are the first to release datasets with malware platform and packer tags.
- Abstract(参考訳): マルウェア分類に関する既存の研究は、悪意のあるファイルと良性のあるファイルの区別と、家族によるマルウェアの分類という2つのタスクにのみ焦点をあてている。
しかし、マルウェアは、他の多くの属性に分類することができ、機械学習を使って新しく出現するマルウェアでこれらの属性を識別できることは、アナリストに重大な価値をもたらす可能性がある。
具体的には、マルウェアが提示する行動の分類、マルウェアが実行しているプラットフォーム、マルウェアが悪用する脆弱性、マルウェアが詰め込まれているパッカーの4つのタスクを特定した。
これらのタスク上でML分類器を訓練し評価するためのラベルを得るために,ClarAVyというアンチウイルスタグツールを開発した。
ClarAVyの洗練されたAVラベルパーサーは、90種類のAV製品で使われている882の異なるAVラベルフォーマットを正確に解析する機能を持つ、以前のAVベースのタグと自身を区別している。
ClarAVyを使ってタグ付けされ、合計で550万近い悪意のあるファイルで構成されています。
私たちのマルウェアの行動データセットには75の異なるタグが含まれています。
私たちの知る限り、私たちはマルウェアプラットフォームとパッカータグを備えたデータセットを最初にリリースしました。
関連論文リスト
- EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
近年,定量化によるマルウェア検出から機械学習への移行が進んでいる。
本稿では、EMBERから始まるバイナリファイルの類似性研究の領域における欠陥に対処することを提案する。
我々は、EMBERに類似情報とマルウェアのクラスタグを付与し、類似性空間のさらなる研究を可能にする。
論文 参考訳(メタデータ) (2023-10-03T06:58:45Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - On deceiving malware classification with section injection [0.0]
マルウェア分類システムを騙すために,実行ファイルの修正方法を検討する。
この研究の主な貢献は、マルウェアファイルにランダムにバイトを注入し、攻撃と防御の両方に使用する手法である。
論文 参考訳(メタデータ) (2022-08-12T02:43:17Z) - New Datasets for Dynamic Malware Classification [0.0]
悪意のあるソフトウェアであるVrusSamplesとVrusShareの2つの新しい、更新されたデータセットを紹介します。
本稿では、これらの2つのデータセットのバランスとバランスの取れていないバージョンにおけるマルチクラスのマルウェア分類性能について分析する。
その結果,不均衡なVirusSampleデータセットでは,Support Vector Machineが94%のスコアを達成していることがわかった。
最も一般的な勾配向上ベースのモデルのひとつであるXGBoostは、VirusShareデータセットの両バージョンにおいて、90%と80%のスコアを達成している。
論文 参考訳(メタデータ) (2021-11-30T08:31:16Z) - MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels [21.050311121388813]
我々は、Malware Open-source Threat Intelligence Family (MOTIF)データセットを作成しました。
MOTIFには454家族の3,095のマルウェアサンプルが含まれており、最大かつ最も多様な公開マルウェアデータセットとなっている。
我々は、同じマルウェアファミリーを記述するために使われる異なる名前のエイリアスを提供し、既存のツールの精度を初めてベンチマークすることができる。
論文 参考訳(メタデータ) (2021-11-29T23:59:50Z) - A Comparison of State-of-the-Art Techniques for Generating Adversarial
Malware Binaries [2.0559497209595814]
我々は,1つの公開可能なマルウェアデータセットから抽出したバイナリマルウェアサンプルを用いて,最近の3つのマルウェア生成手法を評価する。
その結果、比較手法の中で最も有効な手法は、バイナリーヘッダのバイトを戦略的に修正することであることがわかった。
論文 参考訳(メタデータ) (2021-11-22T19:26:33Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - DAEMON: Dataset-Agnostic Explainable Malware Classification Using
Multi-Stage Feature Mining [3.04585143845864]
マルウェア分類は、新しい悪意のある亜種が属する家族を決定するタスクである。
DAEMONは,データセットに依存しない新しいマルウェア分類ツールである。
論文 参考訳(メタデータ) (2020-08-04T21:57:30Z) - Maat: Automatically Analyzing VirusTotal for Accurate Labeling and
Effective Malware Detection [71.84087757644708]
マルウェア分析と検出の研究コミュニティは、約60台のスキャナーのスキャン結果に基づいてAndroidアプリをラベル付けするために、オンラインプラットフォームVirusTotalに依存している。
VirusTotalから取得したスキャン結果を最もよく解釈する方法の基準はありません。
機械学習(ML)ベースのラベリングスキームを自動生成することで,標準化と持続可能性というこれらの問題に対処する手法であるMaatを実装した。
論文 参考訳(メタデータ) (2020-07-01T14:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。