Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scoring of Texts with Large Language Models
- URL: http://arxiv.org/abs/2310.12049v2
- Date: Fri, 24 Jan 2025 22:38:12 GMT
- Title: Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scoring of Texts with Large Language Models
- Authors: Patrick Y. Wu, Jonathan Nagler, Joshua A. Tucker, Solomon Messing,
- Abstract summary: Existing text scoring methods require a large corpus, struggle with short texts, or require hand-labeled data.<n>We develop a text scoring framework that leverages generative large language models (LLMs)<n>We apply this approach to better understand speech reflecting aversion to specific political parties on Twitter.
- Score: 3.656114607436271
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Existing text scoring methods require a large corpus, struggle with short texts, or require hand-labeled data. We develop a text scoring framework that leverages generative large language models (LLMs) to (1) set texts against the backdrop of information from the near-totality of the web and digitized media, and (2) effectively transform pairwise text comparisons from a reasoning problem to a pattern recognition task. Our approach, concept-guided chain-of-thought (CGCoT), utilizes a chain of researcher-designed prompts with an LLM to generate a concept-specific breakdown for each text, akin to guidance provided to human coders. We then pairwise compare breakdowns using an LLM and aggregate answers into a score using a probability model. We apply this approach to better understand speech reflecting aversion to specific political parties on Twitter, a topic that has commanded increasing interest because of its potential contributions to democratic backsliding. We achieve stronger correlations with human judgments than widely used unsupervised text scoring methods like Wordfish. In a supervised setting, besides a small pilot dataset to develop CGCoT prompts, our measures require no additional hand-labeled data and produce predictions on par with RoBERTa-Large fine-tuned on thousands of hand-labeled tweets. This project showcases the potential of combining human expertise and LLMs for scoring tasks.
Related papers
- Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.
We introduce two prompting strategies to semantically enhance unlabeled text.
Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
Authorship attribution aims to identify the origin or author of a document.
Large Language Models (LLMs) with their deep reasoning capabilities and ability to maintain long-range textual associations offer a promising alternative.
Our results on the IMDb and blog datasets show an impressive 85% accuracy in one-shot authorship classification across ten authors.
arXiv Detail & Related papers (2024-10-29T04:14:23Z) - Text-Guided Mixup Towards Long-Tailed Image Categorization [7.207351201912651]
In many real-world applications, the frequency distribution of class labels for training data can exhibit a long-tailed distribution.
We propose a novel text-guided mixup technique that takes advantage of the semantic relations between classes recognized by the pre-trained text encoder.
arXiv Detail & Related papers (2024-09-05T14:37:43Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
We consider the task of paraphrased text-to-image retrieval where a model aims to return similar results given a pair of paraphrased queries.
We train a dual-encoder model starting from a language model pretrained on a large text corpus.
Compared to public dual-encoder models such as CLIP and OpenCLIP, the model trained with our best adaptation strategy achieves a significantly higher ranking similarity for paraphrased queries.
arXiv Detail & Related papers (2024-05-06T06:30:17Z) - ToBlend: Token-Level Blending With an Ensemble of LLMs to Attack AI-Generated Text Detection [6.27025292177391]
ToBlend is a novel token-level ensemble text generation method to challenge the robustness of current AI-content detection approaches.
We find ToBlend significantly drops the performance of most mainstream AI-content detection methods.
arXiv Detail & Related papers (2024-02-17T02:25:57Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal.
Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions.
We propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects.
arXiv Detail & Related papers (2023-03-27T10:40:59Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - JOIST: A Joint Speech and Text Streaming Model For ASR [63.15848310748753]
We present JOIST, an algorithm to train a streaming, cascaded, encoder end-to-end (E2E) model with both speech-text paired inputs, and text-only unpaired inputs.
We find that best text representation for JOIST improves WER across a variety of search and rare-word test sets by 4-14% relative, compared to a model not trained with text.
arXiv Detail & Related papers (2022-10-13T20:59:22Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
We propose a novel model that expands on the Latent Dirichlet Allocation by modeling strong dependence among the words in the same document.
We also simultaneously cluster users, removing the need for post-hoc cluster estimation.
Our method performs as well as -- or better -- than traditional approaches to problems arising in short text.
arXiv Detail & Related papers (2021-06-15T20:55:55Z) - Corpus-Based Paraphrase Detection Experiments and Review [0.0]
Paraphrase detection is important for a number of applications, including plagiarism detection, authorship attribution, question answering, text summarization, etc.
In this paper, we give a performance overview of various types of corpus-based models, especially deep learning (DL) models, with the task of paraphrase detection.
arXiv Detail & Related papers (2021-05-31T23:29:24Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Improving Authorship Verification using Linguistic Divergence [6.673132899229721]
We propose an unsupervised solution to the Authorship Verification task that utilizes pre-trained deep language models.
The proposed metric is a measure of the difference between the two authors comparing against pre-trained language models.
arXiv Detail & Related papers (2021-03-12T03:01:17Z) - MultiGBS: A multi-layer graph approach to biomedical summarization [6.11737116137921]
We propose a domain-specific method that models a document as a multi-layer graph to enable multiple features of the text to be processed at the same time.
The unsupervised method selects sentences from the multi-layer graph based on the MultiRank algorithm and the number of concepts.
The proposed MultiGBS algorithm employs UMLS and extracts the concepts and relationships using different tools such as SemRep, MetaMap, and OGER.
arXiv Detail & Related papers (2020-08-27T04:22:37Z) - A Multi-cascaded Model with Data Augmentation for Enhanced Paraphrase
Detection in Short Texts [1.6758573326215689]
We present a data augmentation strategy and a multi-cascaded model for improved paraphrase detection in short texts.
Our model is both wide and deep and provides greater robustness across clean and noisy short texts.
arXiv Detail & Related papers (2019-12-27T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.