論文の概要: Code Book for the Annotation of Diverse Cross-Document Coreference of
Entities in News Articles
- arxiv url: http://arxiv.org/abs/2310.12064v1
- Date: Wed, 18 Oct 2023 15:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 15:56:48.819579
- Title: Code Book for the Annotation of Diverse Cross-Document Coreference of
Entities in News Articles
- Title(参考訳): ニュース記事における多種多様なクロスドキュメント・コリファレンスのアノテーションのためのコードブック
- Authors: Jakob Vogel
- Abstract要約: それぞれのアノテーションツールであるインセプションのセットアップ方法や、ニュース記事のエンティティの注釈付け方法、様々な中核関係とリンクする方法、Wikidataのグローバルな知識グラフへのドキュメントのリンクなど、詳細な説明が含まれている。
我々の主な貢献は、単語選択とラベル付けによるメディアバイアスの分析に適用可能な、多種多様なクロスドキュメント・コア参照コーパスを作成するための方法論を提供することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a scheme for annotating coreference across news articles,
extending beyond traditional identity relations by also considering
near-identity and bridging relations. It includes a precise description of how
to set up Inception, a respective annotation tool, how to annotate entities in
news articles, connect them with diverse coreferential relations, and link them
across documents to Wikidata's global knowledge graph. This multi-layered
annotation approach is discussed in the context of the problem of media bias.
Our main contribution lies in providing a methodology for creating a diverse
cross-document coreference corpus which can be applied to the analysis of media
bias by word-choice and labelling.
- Abstract(参考訳): 本稿では,ニュース記事間のコーパスをアノテートする手法について,近親者関係やブリッジ関係を考慮し,従来のアイデンティティ関係を超えて拡張する手法を提案する。
それぞれのアノテーションツールであるインセプションのセットアップ方法や、ニュース記事のエンティティの注釈付け方法、様々な中核関係とリンクする方法、Wikidataのグローバルな知識グラフへのドキュメントのリンクなど、詳細な説明が含まれている。
この多層アノテーションアプローチはメディアバイアスの問題の文脈で議論されている。
私たちの主な貢献は、ワードチョイスとラベリングによるメディアバイアスの分析に適用可能な、多様なクロスドキュメントコリファレンスコーパスを作成するための方法論を提供することです。
関連論文リスト
- Data-driven Coreference-based Ontology Building [48.995395445597225]
参照解決は、伝統的に個々の文書理解のコンポーネントとして使用される。
よりグローバルな視点で、すべてのドキュメントレベルのコア参照関係から、ドメインについて何が学べるかを探求します。
コードとともに、クリエイティブ・コモンズライセンスの下でコア参照チェーンをリリースします。
論文 参考訳(メタデータ) (2024-10-22T14:30:40Z) - Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
我々は、異なるモダリティでインターリーブされた文書を均等に埋め込み、より包括的でニュアンスのある文書表現を生成する。
具体的には、テキスト、画像、テーブルの処理と統合を統一されたフォーマットと表現に統合する、近年のビジョン言語モデルの能力を活用して、これを実現する。
論文 参考訳(メタデータ) (2024-10-03T17:49:09Z) - Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - Visual-Semantic Decomposition and Partial Alignment for Document-based Zero-Shot Learning [14.77066147494556]
本稿では,文書や画像から多視点セマンティック概念を抽出し,概念全体ではなくマッチングを整合させる新しいネットワークを提案する。
我々は、文書ベースのゼロショット学習のための3つの標準ベンチマークにおいて、2つの文書ソースにおける最先端の手法を一貫して上回ります。
論文 参考訳(メタデータ) (2024-07-22T13:15:04Z) - Directed Criteria Citation Recommendation and Ranking Through Link Prediction [0.32885740436059047]
本モデルでは,各文書の意味を要約ネットワーク内のノードとして符号化するために,トランスフォーマーベースのグラフ埋め込みを用いる。
我々のモデルが生成するセマンティック表現は、推薦タスクやランキングタスクにおいて、他のコンテントベースの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-18T20:47:38Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
単一文書の要約と多文書の要約の重大な違いは、文書の中で健全なコンテンツがどのように現れるかである。
本稿では,複数文書要約における文書間補完効果とその活用をモデル化する。
提案手法は各文書から合成を生成し,他の文書から有意な内容を識別する支援者として機能する。
論文 参考訳(メタデータ) (2021-10-15T03:55:42Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSumは、インタラクティブな要約と顔検索を統合している。
微粒なファセットは、クロスドキュメントのコア参照パイプラインに基づいて自動的に生成される。
論文 参考訳(メタデータ) (2021-09-23T20:01:11Z) - Assessing the quality of sources in Wikidata across languages: a hybrid
approach [64.05097584373979]
いくつかの言語でラベルを持つWikidataのトリプルからサンプルした参照コーパスの大規模なコーパスを評価するために,一連のマイクロタスク実験を実施している。
クラウドソースアセスメントの統合されたバージョンを使用して、いくつかの機械学習モデルをトレーニングして、Wikidata全体の分析をスケールアップしています。
この結果はWikidataにおける参照の質の確認に役立ち、ユーザ生成多言語構造化データの品質をWeb上で定義し、取得する際の共通の課題を特定するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-20T10:06:46Z) - MIND - Mainstream and Independent News Documents Corpus [0.7347989843033033]
本稿では,オンライン主流メディアや代替メディアソースから収集したさまざまな種類の記事からなるポルトガル語コーパスであるMINDを特徴付ける。
コーパスの記事は、事実、意見、娯楽、風刺、陰謀論の5つのコレクションにまとめられている。
論文 参考訳(メタデータ) (2021-08-13T14:00:12Z) - Multilevel Text Alignment with Cross-Document Attention [59.76351805607481]
既存のアライメントメソッドは、1つの事前定義されたレベルで動作します。
本稿では,文書を文書間注目要素で表現するための階層的アテンションエンコーダを予め確立した新しい学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-03T02:52:28Z) - Document Network Projection in Pretrained Word Embedding Space [7.455546102930911]
本稿では,リンクされた文書の集合を事前学習した単語埋め込み空間に投影する新しい手法である正規化線形埋め込み(RLE)を提案する。
我々は相補的な情報を提供するペアワイズ類似性の行列を利用する(例えば、引用グラフ内の2つの文書のネットワーク近接)。
ドキュメント表現は、レコメンデーション、分類、クラスタリングなど、多くの情報検索タスクを解決するのに役立つ。
論文 参考訳(メタデータ) (2020-01-16T10:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。