Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport
Framework
- URL: http://arxiv.org/abs/2310.12081v4
- Date: Sun, 18 Feb 2024 12:21:29 GMT
- Title: Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport
Framework
- Authors: Haoran Cheng, Dixin Luo, Hongteng Xu
- Abstract summary: We propose a novel and robust graph matching method based on an unbalanced hierarchical optimal transport framework.
We make the first attempt to exploit cross-modal alignment in graph matching.
Experiments on various graph matching tasks demonstrate the superiority and robustness of our method compared to state-of-the-art approaches.
- Score: 33.77930081327417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph matching is one of the most significant graph analytic tasks, which
aims to find the node correspondence across different graphs. Most existing
graph matching approaches mainly rely on topological information, whose
performances are often sub-optimal and sensitive to data noise because of not
fully leveraging the multi-modal information hidden in graphs, such as node
attributes, subgraph structures, etc. In this study, we propose a novel and
robust graph matching method based on an unbalanced hierarchical optimal
transport (UHOT) framework, which, to our knowledge, makes the first attempt to
exploit cross-modal alignment in graph matching. In principle, applying
multi-layer message passing, we represent each graph as layer-wise node
embeddings corresponding to different modalities. Given two graphs, we align
their node embeddings within the same modality and across different modalities,
respectively. Then, we infer the node correspondence by the weighted average of
all the alignment results. This method is implemented as computing the UHOT
distance between the two graphs -- each alignment is achieved by a node-level
optimal transport plan between two sets of node embeddings, and the weights of
all alignment results correspond to an unbalanced modality-level optimal
transport plan. Experiments on various graph matching tasks demonstrate the
superiority and robustness of our method compared to state-of-the-art
approaches. Our implementation is available at
https://github.com/Dixin-Lab/UHOT-GM.
Related papers
- A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
We propose SLOTAlign, an unsupervised graph alignment framework that jointly performs Structure Learning and Optimal Transport Alignment.
We incorporate multi-view structure learning to enhance graph representation power and reduce the effect of structure and feature inconsistency inherited across graphs.
The proposed SLOTAlign shows superior performance and strongest robustness over seven unsupervised graph alignment methods and five specialized KG alignment methods.
arXiv Detail & Related papers (2023-01-30T08:41:36Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Sparse Partial Least Squares for Coarse Noisy Graph Alignment [10.172041234280865]
Graph signal processing (GSP) provides a powerful framework for analyzing signals arising in a variety of domains.
We propose a novel regularized partial least squares method which both incorporates the observed graph structures and imposes sparsity in order to reflect the underlying block community structure.
arXiv Detail & Related papers (2021-04-06T21:52:15Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.