Optimizing edge state transfer in a Su-Schrieffer-Heeger chain via hybrid analog-digital strategies
- URL: http://arxiv.org/abs/2310.12179v2
- Date: Tue, 19 Mar 2024 03:18:12 GMT
- Title: Optimizing edge state transfer in a Su-Schrieffer-Heeger chain via hybrid analog-digital strategies
- Authors: Sebastián V. Romero, Xi Chen, Gloria Platero, Yue Ban,
- Abstract summary: We introduce a hybrid analog-digital protocol designed for the nonadiabatic yet high-fidelity transfer of edge states in an SSH chain.
We identify the next-to-nearest-neighbor hopping terms between sublattice A sites as dominant CD driving and further optimize them by using variational quantum circuits.
This analog-digital transfer protocol, an extension of quantum control methodology, establishes a robust framework for edge-state transfer.
- Score: 3.5621685463862356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Su-Schrieffer-Heeger (SSH) chain, which serves as a paradigmatic model for comprehending topological phases and their associated edge states, plays an essential role in advancing our understanding of quantum materials and quantum information processing and technology. In this paper, we introduce a hybrid analog-digital protocol designed for the nonadiabatic yet high-fidelity transfer of edge states in an SSH chain, featuring two sublattices, A and B. The core of our approach lies in harnessing the approximate time-dependent counterdiabatic (CD) interaction, derived from adiabatic gauge potentials. However, to enhance transfer fidelity, particularly in long-distance chains, higher-order nested commutators become crucial. To simplify the experimental implementation and navigate computational complexities, we identify the next-to-nearest-neighbor hopping terms between sublattice A sites as dominant CD driving and further optimize them by using variational quantum circuits. Through digital quantum simulation, our protocol showcases the capability to achieve rapid and robust solutions, even in the presence of disorder. This analog-digital transfer protocol, an extension of quantum control methodology, establishes a robust framework for edge-state transfer. Importantly, the optimal CD driving identified can be seamlessly implemented across various quantum registers, highlighting the versatility of our approach.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Gate-tunable phase transition in a bosonic Su-Schrieffer-Heeger chain [9.290206579136372]
Su-Schrieffer-Heeger model has gained prominence due to its simplicity and practical applications.
We present the implementation of a gate-tunable, five-unit-cell bosonic SSH chain on a one-dimensional lattice of superconducting resonators.
In contrast to prior work, our approach offers precise and independent in-situ tuning of the coupling parameters.
arXiv Detail & Related papers (2024-04-10T22:03:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - Robust beam splitter with fast quantum state transfer through a
topological interface [5.145468976476656]
We propose to realize a fast topological beam splitter based on a generalized SSH model.
The scheme involves delicate orchestration of the instantaneous energy spectrum through exponential modulation of nearest neighbor coupling strengths and onsite energies.
Our work provides practical prospects for fast and robust topological QST in feasible quantum devices in large-scale quantum information processing.
arXiv Detail & Related papers (2023-04-11T09:27:23Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Entanglement from tensor networks on a trapped-ion QCCD quantum computer [2.943524728957949]
We experimentally demonstrate a significant benefit of this approach to quantum simulation.
In addition to all correlation functions, the entanglement structure of an infinite system is conveniently encoded within a small register of "bond qubits"
We quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit.
arXiv Detail & Related papers (2021-04-22T18:00:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Fast and robust quantum state transfer in a topological
Su-Schrieffer-Heeger chain with Next-to-Nearest-Neighbour interactions [0.0]
We suggest a method for fast and robust quantum-state transfer in a Su-Schrieffer-Heeger chain.
The proposed quantum protocol combines a rapid change in one of the topological edge states, induced by a modulation of nearest-neighbour interactions.
We show that introducing spatial correlations in the disorder increases the robustness of the protocol, widening the range of its applicability.
arXiv Detail & Related papers (2020-06-17T15:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.