論文の概要: Equipping Federated Graph Neural Networks with Structure-aware Group
Fairness
- arxiv url: http://arxiv.org/abs/2310.12350v2
- Date: Wed, 25 Oct 2023 22:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-28 04:29:42.322063
- Title: Equipping Federated Graph Neural Networks with Structure-aware Group
Fairness
- Title(参考訳): 構造認識群フェアネスを用いたフェデレーショングラフニューラルネットワーク
- Authors: Nan Cui, Xiuling Wang, Wendy Hui Wang, Violet Chen and Yue Ning
- Abstract要約: グラフニューラルネットワーク(GNN)は、様々な種類のグラフデータ処理や分析タスクに広く利用されている。
textF2$GNNはFair Federated Graph Neural Networkであり、フェデレートされたGNNのグループフェアネスを高める。
- 参考スコア(独自算出の注目度): 10.301404234578682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have been widely used for various types of graph
data processing and analytical tasks in different domains. Training GNNs over
centralized graph data can be infeasible due to privacy concerns and regulatory
restrictions. Thus, federated learning (FL) becomes a trending solution to
address this challenge in a distributed learning paradigm. However, as GNNs may
inherit historical bias from training data and lead to discriminatory
predictions, the bias of local models can be easily propagated to the global
model in distributed settings. This poses a new challenge in mitigating bias in
federated GNNs. To address this challenge, we propose $\text{F}^2$GNN, a Fair
Federated Graph Neural Network, that enhances group fairness of federated GNNs.
As bias can be sourced from both data and learning algorithms, $\text{F}^2$GNN
aims to mitigate both types of bias under federated settings. First, we provide
theoretical insights on the connection between data bias in a training graph
and statistical fairness metrics of the trained GNN models. Based on the
theoretical analysis, we design $\text{F}^2$GNN which contains two key
components: a fairness-aware local model update scheme that enhances group
fairness of the local models on the client side, and a fairness-weighted global
model update scheme that takes both data bias and fairness metrics of local
models into consideration in the aggregation process. We evaluate
$\text{F}^2$GNN empirically versus a number of baseline methods, and
demonstrate that $\text{F}^2$GNN outperforms these baselines in terms of both
fairness and model accuracy.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまな分野のグラフデータ処理や分析タスクに広く利用されている。
集中的なグラフデータのトレーニングは、プライバシー上の懸念と規制上の制約のために不可能である。
このようにして、フェデレーション学習(fl)は、分散学習パラダイムにおけるこの課題に対処するためのトレンドソリューションとなる。
しかし、GNNはトレーニングデータから歴史的バイアスを継承し、差別的予測につながる可能性があるため、ローカルモデルのバイアスは分散環境でグローバルモデルに容易に伝播することができる。
これは連合gnnのバイアスを軽減するための新たな課題となる。
この課題に対処するために、Fair Federated Graph Neural Networkである$\text{F}^2$GNNを提案する。
データと学習アルゴリズムの両方からバイアスを発生させることができるため、$\text{F}^2$GNNは、フェデレートされた設定の下で両方のバイアスを緩和することを目的としている。
まず、トレーニンググラフにおけるデータバイアスと、トレーニングされたGNNモデルの統計的公正度メトリクスの関係に関する理論的知見を提供する。
理論的解析に基づいて、クライアント側のローカルモデルのグループフェアネスを高めるフェアネス対応ローカルモデル更新スキームと、アグリゲーションプロセスにおいてローカルモデルのデータのバイアスとフェアネスを考慮に入れたフェアネス対応グローバルモデル更新スキームの2つの主要なコンポーネントを含む、$\text{F}^2$GNNを設計する。
我々は, $\text{F}^2$GNNを実験的に, 多数のベースライン法に対して評価し, フェアネスとモデル精度の両面で, これらのベースラインよりも優れていることを示した。
関連論文リスト
- ComFairGNN: Community Fair Graph Neural Network [6.946292440025013]
グラフニューラルネットワーク(GNN)におけるコミュニティレベルのバイアスを軽減するための新しいフレームワークを提案する。
提案手法では,GNNにおける局所分布の多様さから生じるバイアスに対処する,学習可能なコアセットに基づくデバイアス機能を用いる。
論文 参考訳(メタデータ) (2024-11-07T02:04:34Z) - Rethinking Fair Graph Neural Networks from Re-balancing [26.70771023446706]
単純な再分散手法は、既存の公正なGNN手法と容易に一致するか、追い越すことができる。
本稿では,グループバランスによるGNNの不公平さを軽減するために,再バランシングによるFairGB,Fair Graph Neural Networkを提案する。
論文 参考訳(メタデータ) (2024-07-16T11:39:27Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Mitigating Relational Bias on Knowledge Graphs [51.346018842327865]
マルチホップバイアスを同時に緩和し,知識グラフにおけるエンティティとリレーションの近接情報を保存するフレームワークであるFair-KGNNを提案する。
ジェンダー占有とナショナリティ・サリーバイアスを軽減するために,2つの最先端KGNNモデル(RCCNとCompGCN)を組み込んだFair-KGNNの2例を開発した。
論文 参考訳(メタデータ) (2022-11-26T05:55:34Z) - Interpreting Unfairness in Graph Neural Networks via Training Node
Attribution [46.384034587689136]
本稿では,GNNの不公平さを学習ノードの影響によって解釈する新たな問題について検討する。
具体的には,GNNに現れるバイアスを測定するために,確率分布分散(PDD)という新しい手法を提案する。
PDDの有効性と実世界のデータセットを用いた実験による影響評価の有効性を検証する。
論文 参考訳(メタデータ) (2022-11-25T21:52:30Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
グラフニューラルネットワーク(GNN)ベースの手法は、レコメンダシステムの分野を飽和させた。
我々は,GNNの学習を支援するために,グラフ上で個別の公平性を促進させる既存手法を拡張した。
本研究では,局所ニュアンスが表現学習における公平化促進の過程を導くことによって,ミニバッチトレーニングが個人の公正化を促進することを示す。
論文 参考訳(メタデータ) (2022-09-08T16:20:25Z) - FairMod: Fair Link Prediction and Recommendation via Graph Modification [7.239011273682701]
入力グラフの変更によりGNNが学習したバイアスを軽減するためにFairModを提案する。
提案するモデルでは,GNNのトレーニング中にGNNの微視的あるいはマクロ的な編集を行い,リンクレコメンデーションのコンテキスト下で正確かつ公平なノード埋め込みを学習する。
提案手法の有効性を実世界の4つのデータセットに示すとともに,予測精度のリンクを無視できるコストで,提案するフェアネスをいくつかの要因で改善できることを示す。
論文 参考訳(メタデータ) (2022-01-27T15:49:33Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks [29.974829042502375]
本研究では,属性ネットワークのバイアスを軽減するためのフレームワーク EDITS を開発した。
EDITSはモデルに依存しない方法で動作し、ダウンストリームタスクに適用される特定のGNNとは独立している。
論文 参考訳(メタデータ) (2021-08-11T14:07:01Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) は、バイアス付きトレーニングデータとグラフの真の推論分布の分布差を考慮に入れた設計である。
SR-GNNが他のGNNベースラインを精度良く上回り、バイアス付きトレーニングデータから生じる負の効果の少なくとも40%を排除していることを示す。
論文 参考訳(メタデータ) (2021-08-02T18:00:38Z) - FedGraphNN: A Federated Learning System and Benchmark for Graph Neural
Networks [68.64678614325193]
グラフニューラルネットワーク(GNN)の研究は、グラフ構造データから表現を学ぶGNNの能力のおかげで急速に成長しています。
GNNトレーニングのための大量の実世界のグラフデータを集中させることは、ユーザ側のプライバシー上の懸念から禁じられている。
GNNベースのFL研究を促進するためのオープンリサーチフェデレーション学習システムとベンチマークであるFedGraphNNを紹介します。
論文 参考訳(メタデータ) (2021-04-14T22:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。