Classification-Aided Robust Multiple Target Tracking Using Neural
Enhanced Message Passing
- URL: http://arxiv.org/abs/2310.12407v1
- Date: Thu, 19 Oct 2023 01:41:11 GMT
- Title: Classification-Aided Robust Multiple Target Tracking Using Neural
Enhanced Message Passing
- Authors: Xianglong Bai and Zengfu Wang and Quan Pan and Tao Yun and Hua Lan
- Abstract summary: We address the challenge of tracking an unknown number of targets in strong clutter environments using measurements from a radar sensor.
We first introduce a novel neural enhanced message passing approach, where the beliefs obtained by the unified message passing are fed into the neural network as additional information.
We propose a classification-aided robust multiple target tracking algorithm, employing the neural enhanced message passing technique.
- Score: 12.135800589264532
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We address the challenge of tracking an unknown number of targets in strong
clutter environments using measurements from a radar sensor. Leveraging the
range-Doppler spectra information, we identify the measurement classes, which
serve as additional information to enhance clutter rejection and data
association, thus bolstering the robustness of target tracking. We first
introduce a novel neural enhanced message passing approach, where the beliefs
obtained by the unified message passing are fed into the neural network as
additional information. The output beliefs are then utilized to refine the
original beliefs. Then, we propose a classification-aided robust multiple
target tracking algorithm, employing the neural enhanced message passing
technique. This algorithm is comprised of three modules: a message-passing
module, a neural network module, and a Dempster-Shafer module. The
message-passing module is used to represent the statistical model by the factor
graph and infers target kinematic states, visibility states, and data
associations based on the spatial measurement information. The neural network
module is employed to extract features from range-Doppler spectra and derive
beliefs on whether a measurement is target-generated or clutter-generated. The
Dempster-Shafer module is used to fuse the beliefs obtained from both the
factor graph and the neural network. As a result, our proposed algorithm adopts
a model-and-data-driven framework, effectively enhancing clutter suppression
and data association, leading to significant improvements in multiple target
tracking performance. We validate the effectiveness of our approach using both
simulated and real data scenarios, demonstrating its capability to handle
challenging tracking scenarios in practical radar applications.
Related papers
- Learning a Neural Association Network for Self-supervised Multi-Object Tracking [34.07776597698471]
This paper introduces a novel framework to learn data association for multi-object tracking in a self-supervised manner.
Motivated by the fact that in real-world scenarios object motion can be usually represented by a Markov process, we present a novel expectation (EM) algorithm that trains a neural network to associate detections for tracking.
We evaluate our approach on the challenging MOT17 and MOT20 datasets and achieve state-of-the-art results in comparison to self-supervised trackers.
arXiv Detail & Related papers (2024-11-18T12:22:29Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
We propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD)
The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders.
In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters.
arXiv Detail & Related papers (2023-01-30T16:21:18Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds [6.661881950861012]
We propose a novel one-stream network with the strength of the instance-level encoding, which avoids the correlation operations occurring in previous Siamese network.
The proposed method has achieved considerable performance not only for class-specific tracking but also for class-agnostic tracking with less computation and higher efficiency.
arXiv Detail & Related papers (2022-10-16T12:31:59Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Learning data association without data association: An EM approach to
neural assignment prediction [12.970250708769708]
This paper introduces an expectation maximisation approach to train neural models for data association.
It does not require labelling information to train a model for object recognition.
Importantly, networks trained using the proposed approach can be re-used in downstream tracking applications.
arXiv Detail & Related papers (2021-05-02T01:11:09Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
We propose novel TridentAlign and context embedding modules for Siamese network-based visual tracking methods.
The performance of the proposed tracker is comparable to that of state-of-the-art trackers, while the proposed tracker runs at real-time speed.
arXiv Detail & Related papers (2020-07-14T08:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.