論文の概要: SAM Meets UAP: Attacking Segment Anything Model With Universal Adversarial Perturbation
- arxiv url: http://arxiv.org/abs/2310.12431v2
- Date: Tue, 20 Aug 2024 12:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 20:51:22.407906
- Title: SAM Meets UAP: Attacking Segment Anything Model With Universal Adversarial Perturbation
- Title(参考訳): SAMがUAPと対決: あらゆるセグメンテーションモデルへの攻撃
- Authors: Dongshen Han, Chaoning Zhang, Sheng Zheng, Chang Lu, Yang Yang, Heng Tao Shen,
- Abstract要約: 画像認識不能なユニバーサル適応摂動(UAP)を用いてSAM(Segment Anything Model)を攻撃できるかどうかを検討する。
自己教師付きコントラスト学習(CL)に基づくUAP生成手法を実現する新しい摂動中心フレームワークを提案する。
CLを用いたUAP生成手法の有効性を定量的および定性的に検証した。
- 参考スコア(独自算出の注目度): 61.732503554088524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Segment Anything Model (SAM) becomes a popular foundation model in computer vision, its adversarial robustness has become a concern that cannot be ignored. This works investigates whether it is possible to attack SAM with image-agnostic Universal Adversarial Perturbation (UAP). In other words, we seek a single perturbation that can fool the SAM to predict invalid masks for most (if not all) images. We demonstrate convetional image-centric attack framework is effective for image-independent attacks but fails for universal adversarial attack. To this end, we propose a novel perturbation-centric framework that results in a UAP generation method based on self-supervised contrastive learning (CL), where the UAP is set to the anchor sample and the positive sample is augmented from the UAP. The representations of negative samples are obtained from the image encoder in advance and saved in a memory bank. The effectiveness of our proposed CL-based UAP generation method is validated by both quantitative and qualitative results. On top of the ablation study to understand various components in our proposed method, we shed light on the roles of positive and negative samples in making the generated UAP effective for attacking SAM.
- Abstract(参考訳): Segment Anything Model (SAM) はコンピュータビジョンにおいて一般的な基礎モデルとなり、その逆の堅牢性は無視できない懸念となっている。
本研究は,画像に依存しないユニバーサル・ディバイサル・摂動 (UAP) でSAMを攻撃できるかどうかを検討する。
言い換えれば、SAMを騙して、ほとんどの(すべてではないとしても)画像に対して不正なマスクを予測できる単一の摂動を求める。
画像中心攻撃は画像独立攻撃には有効であるが,普遍的攻撃には有効ではないことを示す。
そこで本研究では,UAP をアンカーサンプルに設定し,UAP から正のサンプルを付加する自己教師付きコントラスト学習 (CL) に基づく UAP 生成手法を提案する。
画像エンコーダから負サンプルの表現を予め取得し、メモリバンクに保存する。
CLを用いたUAP生成手法の有効性を定量的および定性的に検証した。
提案手法の様々な成分を理解するためのアブレーション研究に加えて, 生成したUAPをSAM攻撃に有効にするために, 正および負のサンプルが果たす役割について光を当てた。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - DarkSAM: Fooling Segment Anything Model to Segment Nothing [25.67725506581337]
Segment Anything Model (SAM) は、最近、データやタスクの見当たらない一般化で注目を集めている。
セマンティックデカップリングに基づく空間攻撃とテクスチャ歪みに基づく周波数攻撃を含む,SAMに対する最初のプロンプトフリーユニバーサルアタックフレームワークであるDarkSAMを提案する。
SAMの4つのデータセットとその2つの変種モデルに対する実験結果は、DarkSAMの強力な攻撃能力と転送可能性を示している。
論文 参考訳(メタデータ) (2024-09-26T14:20:14Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Black-box Targeted Adversarial Attack on Segment Anything (SAM) [24.927514923402775]
本研究は,Segment Anything Model (SAM) におけるターゲット対敵攻撃 (TAA) の実現を目的とする。
具体的には、特定のプロンプトの下では、敵の例の予測マスクを所定のターゲット画像のマスクに類似させることが目的である。
本稿では, ランダムな自然画像に対する逆画像の特徴優位性を高めることで, クロスモデル転送可能性を高める新たな正規化損失を提案する。
論文 参考訳(メタデータ) (2023-10-16T02:09:03Z) - SAM Meets Robotic Surgery: An Empirical Study on Generalization,
Robustness and Adaptation [15.995869434429274]
Segment Anything Model (SAM) はセグメンテーションの基本モデルとして機能する。
ロボット外科領域におけるSAMの頑健性とゼロショットの一般化性について検討した。
論文 参考訳(メタデータ) (2023-08-14T14:09:41Z) - Attack-SAM: Towards Attacking Segment Anything Model With Adversarial
Examples [68.5719552703438]
Segment Anything Model (SAM) は、様々なダウンストリームタスクにおける印象的なパフォーマンスのために、最近大きな注目を集めている。
深い視覚モデルは敵の例に弱いと広く認識されており、それはモデルを騙して知覚不能な摂動で間違った予測をする。
この研究は、SAMの攻撃方法に関する総合的な調査を敵対的な例で実施した最初のものである。
論文 参考訳(メタデータ) (2023-05-01T15:08:17Z) - FG-UAP: Feature-Gathering Universal Adversarial Perturbation [15.99512720802142]
本稿では,ニューラル・コラプス(NC)が発生する層を攻撃することにより,ユニバーサル・ディバイサル・摂動(UAP)を生成することを提案する。
NCにより、提案された攻撃は、すべての自然画像の特徴を周囲に集めることができ、それゆえ、FG-UAP(Feature-Gathering UAP)と呼ばれる。
提案アルゴリズムの有効性は,未目標および目標とする汎用攻撃,限られたデータセットによる攻撃,転送ベースのブラックボックス攻撃など,豊富な実験において評価される。
論文 参考訳(メタデータ) (2022-09-27T02:03:42Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z) - CD-UAP: Class Discriminative Universal Adversarial Perturbation [83.60161052867534]
単一の普遍的対向摂動(UAP)は、予測されたクラスラベルのほとんどを変更するために、すべての自然画像に追加することができる。
本稿では,対象ネットワークを騙して選択したクラスのみを誤分類する単一摂動を生成する,新たなユニバーサルアタック手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。