Supersensitive sensing of quantum reservoirs via breaking antisymmetric
coupling
- URL: http://arxiv.org/abs/2310.12445v1
- Date: Thu, 19 Oct 2023 03:52:37 GMT
- Title: Supersensitive sensing of quantum reservoirs via breaking antisymmetric
coupling
- Authors: Ji-Bing Yuan, Zhi-Min Tang, Ya-Ju Song, Shi-Qing Tang, Zhao-Hui Peng,
Xin-Wen Wang, Le-Man Kuang
- Abstract summary: In addition to the decay factor encoding channel, the antisymmetric coupling breaking gives rise to another phase factor encoding channel.
We introduce an optimal measurement for the generalized dephasing qubit.
Our work opens a way for supersensitive sensing of quantum reservoirs.
- Score: 2.3291814161028497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the utilization of a single generalized dephasing qubit for
sensing a quantum reservoir, where the antisymmetric coupling between the qubit
and its reservoir is broken. It is found that in addition to the decay factor
encoding channel, the antisymmetric coupling breaking gives rise to another
phase factor encoding channel. We introduce an optimal measurement for the
generalized dephasing qubit which enables the practical measurement precision
to reach the theoretical ultimate precision quantified by the quantum
signal-to-noise ratio (QSNR). As an example, the generalized dephasing qubit is
employed to estimate the $s$-wave scattering length of an atomic Bose-Einstein
condensate. It is found that the phase-induced QSNR caused by the antisymmetric
coupling breaking is at least two orders of magnitude higher than the
decay-induced QSNR at the millisecond timescale and the optimal relative error
can achieve a scaling $\propto 1/t$ with $t$ being the encoding time in
long-term encoding. Our work opens a way for supersensitive sensing of quantum
reservoirs.
Related papers
- Optimal Low-Depth Quantum Signal-Processing Phase Estimation [0.029541734875307393]
We introduce Quantum Signal-Processing Phase Estimation algorithms that are robust against challenges and achieve optimal performance.
Our approach achieves an unprecedented standard deviation accuracy of $10-4$ radians for estimating unwanted swap angles in superconducting two-qubit experiments.
Our results are rigorously validated against the quantum Fisher information, confirming our protocol's ability to achieve unmatched precision for two-qubit gate learning.
arXiv Detail & Related papers (2024-06-17T10:33:52Z) - Reducing the runtime of fault-tolerant quantum simulations in chemistry
through symmetry-compressed double factorization [0.0]
We introduce the symmetry-compressed double factorization (SCDF) approach, which combines a compressed double factorization of the Hamiltonian with the symmetry shift technique, significantly reducing the 1-norm value.
For the systems considered here, SCDF leads to a sizeable reduction of the Toffoli gate count in comparison to other variants of double factorization or even tensor hypercontraction.
arXiv Detail & Related papers (2024-03-06T07:11:02Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum error mitigation for rotation symmetric bosonic codes with
symmetry expansion [0.2770822269241974]
We propose a class of quantum error mitigation that virtually projects the state onto the noise-free symmetric subspace.
We show that symmetry expansion dramatically suppresses the effect of photon loss.
Our novel error mitigation method will significantly enhance computation accuracy in the near-term bosonic quantum computing paradigm.
arXiv Detail & Related papers (2022-11-11T12:33:11Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Quantum Metrology with Coherent Superposition of Two Different Coded
Channels [1.430924337853801]
We show that the Heisenberg limit $1/N$ can be beaten by the coherent superposition without the help of indefinite causal order.
We analytically obtain the general form of estimation precision in terms of the quantum Fisher information.
Our results can help to construct a high-precision measurement equipment.
arXiv Detail & Related papers (2020-12-03T13:25:16Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - A comparison between quantum and classical noise radar sources [0.07829352305480283]
We compare the performance of a quantum radar based on two-mode squeezed states with a classical radar system based on correlated thermal noise.
With a constraint of equal number of photons $N_S$ transmitted to probe the environment, we find that the quantum setup exhibits an advantage with respect to its classical counterpart.
arXiv Detail & Related papers (2020-08-28T15:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.