Single-shot decoding of good quantum LDPC codes
- URL: http://arxiv.org/abs/2306.12470v2
- Date: Thu, 11 Apr 2024 22:44:44 GMT
- Title: Single-shot decoding of good quantum LDPC codes
- Authors: Shouzhen Gu, Eugene Tang, Libor Caha, Shin Ho Choe, Zhiyang He, Aleksander Kubica,
- Abstract summary: We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
- Score: 38.12919328528587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Tanner codes constitute a family of quantum low-density parity-check (LDPC) codes with good parameters, i.e., constant encoding rate and relative distance. In this article, we prove that quantum Tanner codes also facilitate single-shot quantum error correction (QEC) of adversarial noise, where one measurement round (consisting of constant-weight parity checks) suffices to perform reliable QEC even in the presence of measurement errors. We establish this result for both the sequential and parallel decoding algorithms introduced by Leverrier and Z\'emor. Furthermore, we show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round. Combined with good code parameters, the resulting constant-time overhead of QEC and robustness to (possibly time-correlated) adversarial noise make quantum Tanner codes alluring from the perspective of quantum fault-tolerant protocols.
Related papers
- On fault tolerant single-shot logical state preparation and robust long-range entanglement [1.3408612567129143]
We prove that single-shot logical state preparation can be achieved for arbitrary quantum LDPC codes.
We also prove single-shot preparation of the encoded GHZ state in arbitrary quantum LDPC codes.
arXiv Detail & Related papers (2024-11-07T03:51:05Z) - Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
A major challenge in fault-tolerant quantum computation is to reduce both space overhead and time overhead.
We show that a protocol using non-vanishing-rate quantum low-density parity-check codes achieves constant space overhead and polylogarithmic time overhead.
arXiv Detail & Related papers (2024-11-06T06:06:36Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Demonstration of fault-tolerant Steane quantum error correction [0.7174990929661688]
This study presents the implementation of multiple rounds of fault-tolerant Steane QEC on a trapped-ion quantum computer.
Various QEC codes are employed, and the results are compared to a previous experimental approach utilizing flag qubits.
arXiv Detail & Related papers (2023-12-15T12:32:49Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
arXiv Detail & Related papers (2022-08-04T16:18:20Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Theory of quasi-exact fault-tolerant quantum computing and
valence-bond-solid codes [3.6192409729339223]
We develop the theory of quasi-exact fault-tolerant quantum computation, which uses qubits encoded into quasi-exact quantum error-correction codes ("quasi codes")
The model of QEQ lies in between the two well-known ones: the usual noisy quantum universality without error correction and the usual fault-tolerant quantum computation, but closer to the later.
arXiv Detail & Related papers (2021-05-31T08:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.