Antisymmetry-breaking-coupling-enhanced sensing of quantum reservoirs
- URL: http://arxiv.org/abs/2310.12445v2
- Date: Fri, 29 Nov 2024 13:30:04 GMT
- Title: Antisymmetry-breaking-coupling-enhanced sensing of quantum reservoirs
- Authors: Ji-Bing Yuan, Zhi-Min Tang, Ya-Ju Song, Shi-Qing Tang, Zhao-Hui Peng, Xin-Wen Wang, Le-Man Kuang,
- Abstract summary: In addition to the decay factor encoding channel, the antisymmetric coupling breaking gives rise to another phase factor encoding channel.
We introduce an optimal measurement for the generalized dephasing qubit.
Our work opens a way for supersensitive sensing of quantum reservoirs.
- Score: 2.217960203343116
- License:
- Abstract: We investigate the utilization of a single generalized dephasing qubit for sensing a quantum reservoir, where the antisymmetric coupling between the qubit and its reservoir is broken. It is found that in addition to the decay factor encoding channel, the antisymmetric coupling breaking gives rise to another phase factor encoding channel. We introduce an optimal measurement for the generalized dephasing qubit which enables the practical measurement precision to reach the theoretical ultimate precision quantified by the quantum signal-to-noise ratio (QSNR). As an example, the generalized dephasing qubit is employed to estimate the $s$-wave scattering length of an atomic Bose-Einstein condensate. It is found that the phase-induced QSNR caused by the antisymmetric coupling breaking is at least two orders of magnitude higher than the decay-induced QSNR at the millisecond timescale and the optimal relative error can achieve a scaling $\propto 1/t$ with $t$ being the encoding time in long-term encoding. Our work opens a way for supersensitive sensing of quantum reservoirs.
Related papers
- Utilizing encoding time as a resource to enhance quantum sensing by probe qubit dephasing [0.14393881918140122]
We study a system in which an impurity qubit is immersed in a quasi-two-dimensional dipolar Bose-Einstein condensate.
The relative dipole-dipole interaction strength is estimated by the probe qubit dephasing.
It is also revealed that the highly non-Markovian effects caused by the roton softening of the excitation spectrum allow long encoding time to serve as a resource for enhancing sensing precision.
arXiv Detail & Related papers (2024-11-29T02:32:05Z) - Reducing the runtime of fault-tolerant quantum simulations in chemistry
through symmetry-compressed double factorization [0.0]
We introduce the symmetry-compressed double factorization (SCDF) approach, which combines a compressed double factorization of the Hamiltonian with the symmetry shift technique, significantly reducing the 1-norm value.
For the systems considered here, SCDF leads to a sizeable reduction of the Toffoli gate count in comparison to other variants of double factorization or even tensor hypercontraction.
arXiv Detail & Related papers (2024-03-06T07:11:02Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum error mitigation for rotation symmetric bosonic codes with
symmetry expansion [0.2770822269241974]
We propose a class of quantum error mitigation that virtually projects the state onto the noise-free symmetric subspace.
We show that symmetry expansion dramatically suppresses the effect of photon loss.
Our novel error mitigation method will significantly enhance computation accuracy in the near-term bosonic quantum computing paradigm.
arXiv Detail & Related papers (2022-11-11T12:33:11Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Quantum Metrology with Coherent Superposition of Two Different Coded
Channels [1.430924337853801]
We show that the Heisenberg limit $1/N$ can be beaten by the coherent superposition without the help of indefinite causal order.
We analytically obtain the general form of estimation precision in terms of the quantum Fisher information.
Our results can help to construct a high-precision measurement equipment.
arXiv Detail & Related papers (2020-12-03T13:25:16Z) - A comparison between quantum and classical noise radar sources [0.07829352305480283]
We compare the performance of a quantum radar based on two-mode squeezed states with a classical radar system based on correlated thermal noise.
With a constraint of equal number of photons $N_S$ transmitted to probe the environment, we find that the quantum setup exhibits an advantage with respect to its classical counterpart.
arXiv Detail & Related papers (2020-08-28T15:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.